Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Photocatalysis

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 41

Full-Text Articles in Engineering

Catalytical Performance Of Heteroatom Doped And Undoped Carbon-Based Materials, Jahangir Alom, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar, Mohammad Boshir Ahmed May 2023

Catalytical Performance Of Heteroatom Doped And Undoped Carbon-Based Materials, Jahangir Alom, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar, Mohammad Boshir Ahmed

Research outputs 2022 to 2026

Developing cost-effective, eco-friendly, efficient, stable, and unique catalytic systems remains a crucial issue in catalysis. Due to their superior physicochemical and electrochemical properties, exceptional structural characteristics, environmental friendliness, economic productivity, minimal energy demand, and abundant supply, a significant amount of research has been devoted to the development of various doped carbon materials as efficient catalysts. In addition, carbon-based materials (CBMs) with specified doping have lately become significant members of the carbon group, showing promise for a broad range of uses (e.g., catalysis, environmental remediation, critical chemical production, and energy conversion and storage). This study will, therefore, pay attention to the …


Photocatalytic Reforming Of Lignocellulose: A Review, Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun Jan 2023

Photocatalytic Reforming Of Lignocellulose: A Review, Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun

Research outputs 2022 to 2026

Biomass has been considered as a promising energy resource to combat the exhaustion of fossil fuels, as it is renewable, sustainable, and clean. Photocatalytic reforming is a novel technology to utilize solar energy for upgrading biomass in relatively mild conditions. This process efficiently reforms and recasts biomass into hydrogen and/or valuable chemicals. To date, lignocellulose, including cellulose, hemicellulose and lignin, has attracted extensive studies in facile photocatalytic valorisation. This review summarizes and analyzes the most recent research advances on photoreforming of lignocellulose to provide insights for future research, with a particular emphasis on the reformation of lignin because of its …


Functional Carbon Nitride Materials In Photo-Fenton-Like Catalysis For Environmental Remediation, Jingkai Lin, Wenjie Tian, Zheyu Guan, Huayang Zhang, Xiaoguang Duan, Hao Wang, Hongqi Sun, Yanfen Fang, Yingping Huang, Shaobin Wang Jun 2022

Functional Carbon Nitride Materials In Photo-Fenton-Like Catalysis For Environmental Remediation, Jingkai Lin, Wenjie Tian, Zheyu Guan, Huayang Zhang, Xiaoguang Duan, Hao Wang, Hongqi Sun, Yanfen Fang, Yingping Huang, Shaobin Wang

Research outputs 2022 to 2026

Among various advanced oxidation processes, coupled photocatalysis and heterogeneous Fenton-like catalysis (known as photo-Fenton-like catalysis) to generate highly reactive species for environmental remediation has attracted wide interests. As an emerging metal-free photocatalyst, graphitic carbon nitride (g-C3N4, CN) has been recently recognized as a promising candidate to catalyze robustly heterogeneous photo-Fenton-like reactions for wastewater remediation. This review summarizes recent progress in fabricating various types of CN-based catalysts for the photo-Fenton-like reaction process. Innovative engineering strategies on the CN matrix are outlined, ranging from morphology control, defect engineering, nonmetal atom doping, organic molecule doping to modification by metal-containing species. The photo-Fenton-like catalytic …


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Understanding The Photodegradation Mechanism Of Gaseous Acetaldehyde Over Bi2wo6 – Modified Znwo4 Photocatalyst Under Uv Light Irradiation, Mirabbos Hojamberdiev, Ronald Vargas, Shahlo Daminova, Zuhra Kadirova Feb 2022

Understanding The Photodegradation Mechanism Of Gaseous Acetaldehyde Over Bi2wo6 – Modified Znwo4 Photocatalyst Under Uv Light Irradiation, Mirabbos Hojamberdiev, Ronald Vargas, Shahlo Daminova, Zuhra Kadirova

CHEMISTRY AND CHEMICAL ENGINEERING

Indoor air quality has a significant impact on human health as people spend more time indoors. As a common indoor air pollutant, acetaldehyde is considered toxic when exposed to it for a prolonged period. The aim of this study is the enhancement of the photocatalytic activity of ZnWO4 with a monoclinic wolframite structure for degradation of gaseous acetaldehyde by modifying its surface with Bi2WO6 layered structure. The mechanisms behind the enhanced photocatalytic activity and the pathways for acetaldehyde photodegradation over the Bi2WO6-modified ZnWO4 photocatalyst are discussed.


Gold-Semiconductor Photocatalysts For Water Treatment Under Visible And Ultraviolet Light, Daniel Willis Mar 2021

Gold-Semiconductor Photocatalysts For Water Treatment Under Visible And Ultraviolet Light, Daniel Willis

LSU Doctoral Dissertations

Water scarcity threatens the lives of millions of people worldwide. It is imperative to improve the energy efficiency and affordability of water treatment methods to avoid a looming water-energy crisis. To meet this challenge, I have pursued research on the use of sunlight—our most reliable and abundant source of energy—to drive water treatment through photocatalysis. I explored the literature and found gold-semiconductor materials to hold promise for harvesting sunlight and catalyzing the breakdown of waterborne contaminants. Initially, I designed a novel optical cavity with gold (Au) nanoparticles on a zinc oxide / titania (TiO2) / aluminum film stack …


Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai Mar 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai

Entomology Faculty Publications

Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


Significant Improvement In Tio₂ Photocatalytic Activity Through Controllable Zro₂ Deposition, Xiaofeng Wang, Rajankumar L. Patel, Xinhua Liang Jul 2018

Significant Improvement In Tio₂ Photocatalytic Activity Through Controllable Zro₂ Deposition, Xiaofeng Wang, Rajankumar L. Patel, Xinhua Liang

Chemical and Biochemical Engineering Faculty Research & Creative Works

ZrO2 was deposited on anatase TiO2 nanoparticles using 5-80 cycles of atomic layer deposition (ALD). The photocatalytic activity of all samples was evaluated based on the degradation of methylene blue (MB) solution under UV light. The TiO2 sample with 45 cycles of ZrO2 deposition (45c-Zr/TiO2, 1.1 wt% ZrO2) was proved to be the most efficient catalyst with a degradation kinetic constant 10 times larger than that of the pure TiO2 sample. All samples were characterized using inductively coupled plasma atomic emission spectroscopy (ICP-AES), nitrogen adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy …


Defect Laden Metal Oxides And Oxynitrides For Sustainable Low Temperature Carbon Dioxide Conversion To Fuel Feedstocks, Debtanu Maiti Jun 2018

Defect Laden Metal Oxides And Oxynitrides For Sustainable Low Temperature Carbon Dioxide Conversion To Fuel Feedstocks, Debtanu Maiti

USF Tampa Graduate Theses and Dissertations

The current energy and environmental scenario in the world demands acute attention on sustainable repurposing of waste CO2 to high value hydrocarbons that not only addresses the CO2 mitigation problem, but also provides pathways for a closed loop synthetic carbon cycle. Difference in the scales of global CO2 emissions (about 40 Gtpa, 2017) and the carbon capture and sequestration (CCS) facilities (estimated cumulative 40 Mtpa, 2018) provokes active research on this topic. Solar thermochemical (STC) and visible light photocatalysis are two of the most promising routes that have garnered attention for this purpose. While STC has the advantages of high …


Hydrogen Generation From Eosin Y-Sensitized Pt/Zno Under Solar Light Irradiation, Tianfang Tian May 2018

Hydrogen Generation From Eosin Y-Sensitized Pt/Zno Under Solar Light Irradiation, Tianfang Tian

Electronic Thesis and Dissertation Repository

Hydrogen is a promising alternative energy carrier. Generating hydrogen via photocatalysts is clean and energy saving comparing to the current technology for hydrogen generation. ZnO has been proved to have photocatalytic activities for wastewater treatment by multiple studies. However, there are not enough studies to investigate its potential to generate hydrogen as the photocatalyst under light irradiation. Therefore, we will investigate the photocatalytic ability of Pt/ZnO to generate hydrogen. Triethanolamine (TEOA) was used as sacrificial reagent while Eosin Y was used as sensitizer. Pt/ZnO was characterized and tested for its activity for hydrogen generation in different conditions, which are platinum …


Design Of 3d Macroporous Inverse Opal Tio2 Binary And Ternary Composites Sensitized With Gold Nanoparticles And Cds Quantum Dots For Photocatalysis, Daniel A. Corella Apr 2017

Design Of 3d Macroporous Inverse Opal Tio2 Binary And Ternary Composites Sensitized With Gold Nanoparticles And Cds Quantum Dots For Photocatalysis, Daniel A. Corella

Master of Science in Chemical Sciences Theses

Materials composed of titanium (IV) oxide (TiO2) have received enormous scientific interest due to titania’s abundance, non-toxicity, and photocatalytic proficiency, however its large band gap limits its applicability under ambient conditions. Various attempts have been made to incorporate titania into composite systems to sensitize it for activity under a broader range of wavelengths. One such method includes utilizing narrow band gap semiconductors to form an electron transfer process analogous to photosynthesis referred to as a Z-scheme. Z-scheme systems can catalyze the decomposition of aqueous pollutants via generation of reactive oxygen species after input of sunlight. This work reports …


Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin Mar 2017

Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin

Chemical and Materials Engineering Faculty Publications

Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to …


Synthesis And Energy Applications Of Mesoporous Titania Thin Films, Syed Z. Islam Jan 2017

Synthesis And Energy Applications Of Mesoporous Titania Thin Films, Syed Z. Islam

Theses and Dissertations--Chemical and Materials Engineering

The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization.

For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been …


Photocatalytic Decomposition Of Phenol Under Visible And Uv Light Utilizing Titanium Dioxide Based Catalysts, Marjorie G. Steiner Jan 2017

Photocatalytic Decomposition Of Phenol Under Visible And Uv Light Utilizing Titanium Dioxide Based Catalysts, Marjorie G. Steiner

Honors Theses and Capstones

Pollution in wastewater effluvia from phenol and phenolic compounds is a common occurrence in many industrial manufacturing plants. Phenol is toxic to human beings as well as a contaminant to the environment, meanwhile, it is difficult to remove from wastewater due to its non-biodegradable nature. To boost the rate of decomposition, various catalytic approaches have been developed. With the interest of decreasing operation cost, titanium dioxide (TiO2) based catalysts have emerged as good candidates for the photocatalytic process.

In this honors project, a series of TiO2 based catalysts, including TiO2, N-TiO2, Cu-TiO2 …


Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega Aug 2016

Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega

Electronic Thesis and Dissertation Repository

The high VOC emissions from anthropogenic sources are detrimental to both the environment and humans, contributing with ground-level ozone and particle matter formation. Heterogeneous photocatalysis provides significant potential for VOC degradation. However, the approaches to be used for photocatalyst immobilization in scaled and highly efficient photoreactors are still not well established. Furthermore, there is a lack of reported photonic efficiencies and a shortage of required methods to establish these efficiencies.

To address these issues, this PhD Dissertation reports the study of photonic efficiencies, TiO2 immobilization on a stainless steel mesh and kinetic models in a scaled-up Photo-CREC-Air Reactor. Acetone …


Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang Aug 2016

Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang

McKelvey School of Engineering Theses & Dissertations

Environmental technologies, such as for water treatment, have advanced significantly due to the rapid expansion and application of nanoscale material science and engineering. In particular, two-dimensional graphene oxide (GO), has demonstrated considerable potential for advancing and even revolutionizing some of these technologies, such as engineered photocatalysts and membranes. To realize such potential, an industrially scalable process is needed to produce monomeric and aggregation-resistant GO nanostructures/composites, in addition to new knowledge of material properties, behavior, and performance within an environmental context.

Research presented in this thesis addresses both scientific and engineering gaps through the development of a simple, yet robust aerosol-based …


The Design And Testing Of A Novel Batch Photocatalytic Reactor And Photocatalyst, Shawn Sasser Jun 2016

The Design And Testing Of A Novel Batch Photocatalytic Reactor And Photocatalyst, Shawn Sasser

USF Tampa Graduate Theses and Dissertations

With an ever-increasing human population, the importance in having sustainable energy resources is becoming increasingly evident, as the current energy habits have brought about massive atmospheric pollution in the form of CO2 emissions, resulting in a rise in the average global temperature. To battle the effects of climate change, many alternative energy resources have been investigated. Among these, photocatalytic conversion of CO2 to renewable hydrocarbon fuels such as methane and methanol is one of the most desirable, as it provides the opportunity to utilize the sun’s energy to convert CO2 to renewable fuels. The work in this …


Interplays Of Co2, Subnanometer Metal Clusters, And Tio2: Implications For Catalysis And Co2 Photoreduction, Chi-Ta Yang Sep 2015

Interplays Of Co2, Subnanometer Metal Clusters, And Tio2: Implications For Catalysis And Co2 Photoreduction, Chi-Ta Yang

USF Tampa Graduate Theses and Dissertations

This research is motivated by two significant challenges facing the planet: reducing the emission of CO2 to the atmosphere and production of sustainable fuels by harnessing solar energy. The main objective of this work is the study of promising photocatalysts for CO2 reduction. DFT modeling of CO2, subnanometer Ag&Pt clusters, and anatase TiO2 (101) surface is employed to gain fundamental understanding of the catalytic process, followed by validation using a guided experimental endeavor. The binding mechanism of CO2 on the surface is investigated in detail to gain insights into the catalytic activity and to assist …


Solar Photocatalytic Reduction Of Zn2+ Using Graphene-Based Tio2 Composite Catalyst For Application To Cso Treatment, Gloria Kumordzi Apr 2015

Solar Photocatalytic Reduction Of Zn2+ Using Graphene-Based Tio2 Composite Catalyst For Application To Cso Treatment, Gloria Kumordzi

Electronic Thesis and Dissertation Repository

The improvement of photocatalyst efficiency in utilizing the majority of wavelengths in the solar spectrum, an abundant natural resource, presents the next step in the large scale application of photocatalysis for the treatment of dissolved organic and inorganic pollutants in wastewater. In this study, a composite catalyst of TiO2 and Graphene synthesized by a hydrothermal treatment method is used to photo-reduce Zn2+, the most abundant heavy metal found in combined sewer overflows (CSOs). The performance of this composite catalyst was assessed under various process conditions such as pH, light intensity, catalyst loading and light source. The TiO …


Novel Nanostructured Materials For Solar Fuel Production And Advanced Rechargeable Batteries, Cunyu Zhao Dec 2014

Novel Nanostructured Materials For Solar Fuel Production And Advanced Rechargeable Batteries, Cunyu Zhao

Theses and Dissertations

Non-renewable fossil fuels are the major sources to meet the energy, electricity and transportation demands of today's world. The over consumption of fossil fuels will lead to the increasing energy crisis and disastrous effects such as air pollution, global warming etc.

The primary greenhouse gas is CO2 mainly emits from the combustion of fossil fuels. Photocatalytic reduction of CO2 using sunlight as the energy input is a promising way to reduce CO2 level in the atmosphere and in the meantime produce alternative fuels such as CO, methane, methanol, etc. Among the various photocatalyst materials reported, nanomaterial TiO2 is the most …


Investigation Of Enhanced Titanium And Zinc Oxide Semiconductors For The Photodegradation Of Aqueous Organic Compounds, Innocent Udom Oct 2014

Investigation Of Enhanced Titanium And Zinc Oxide Semiconductors For The Photodegradation Of Aqueous Organic Compounds, Innocent Udom

USF Tampa Graduate Theses and Dissertations

Growing demand and shortages of potable water sources due to industrialization have become a great concern worldwide. Various approaches and solutions have been adopted to provide cleaner and quality water. In a preliminary study, a method of treating wastewater was investigated in which algae were used to remove nutrients (nitrogen and phosphorous) from wastewater and then the algae were harvested for use as a biofuel. The results from this investigation are included in the Appendix B. Employing traditional oxidants, such as hydrogen peroxide, chlorine, and ozone, for treatment of recalcitrant organic compounds have achieved less promising results. However, photocatalysis, an …


Antibacterial Studies On Titania Polyurethane Nanocomposite Coatings, Koosha Azhie Apr 2014

Antibacterial Studies On Titania Polyurethane Nanocomposite Coatings, Koosha Azhie

Electronic Thesis and Dissertation Repository

While temporary disinfection of a surface is possible with the help of strong cleaners, tremendous interest exists for the control of microorganisms on surfaces by effective, durable antimicrobial coatings. There is a wide spectrum of potential applications for antibacterial coatings, spanning from industrial surface coatings to biomedical applications, where sterile conditions are crucial. This work examined the synthesis of the functionalized 2,2-Dimethylolpropionic acid - nanotitanium dioxide (DMPA-nTiO2) monomer. Moreover, functionalized nanotitanium dioxide/polyurethane (nTiO2/PU) composite coatings were prepared using the above mentioned functionalized monomer. The distribution of nTiO2 in the polymer matrix was enhanced by monomer …


Investigation Of Tio2 And Invo4-Tio2 Semiconductors For The Photocatalytic Degradation Of Aqueous Organics, Sandra L. Pettit Mar 2014

Investigation Of Tio2 And Invo4-Tio2 Semiconductors For The Photocatalytic Degradation Of Aqueous Organics, Sandra L. Pettit

USF Tampa Graduate Theses and Dissertations

Water is a vital natural resource. To develop more sustainable water systems, we must focus efforts on the removal of persistent contaminants. Aqueous organic contaminants include azo dyes, halogenated organics (e.g. pesticides), and algal and bacterial metabolites. The latter are common to surface waters and freshwater aquaculture systems and can cause taste and odor problems. Two of the principal organoleptic compounds are geosmin and 2-methylisoborneol (MIB). Traditional oxidation treatment methods, utilizing chlorine, hydrogen peroxide, and potassium permanganate, have been employed with varying levels of efficacy for removal of these and other organic contaminants. Advanced Oxidation Processes (AOPs) have greater potential …


A Comprehensive Study Of Cd(Ii) Removal From Aqueous Solution Via Adsorption And Solar Photocatalysis, Samindika Athapaththu Dec 2013

A Comprehensive Study Of Cd(Ii) Removal From Aqueous Solution Via Adsorption And Solar Photocatalysis, Samindika Athapaththu

Electronic Thesis and Dissertation Repository

As the increase in industrial technology continue to progress, it results in the increase in heavy metal pollution, creating harmful effects on humans, plants, and animals. Since toxic metals do not degrade easily, they accumulate over time, posing greater danger to living organisms. Removal of these heavy metals is therefore, of great importance. Though many research studies successfully utilized UV photocatalysis with TiO2 catalyst for the removal of Cd2+, none have performed the photoreduction of Cd2+ under visible light using eosin-y dye-sensitized TiO2. The objective of the present research is to study the photocatalytic …


Self-Cleaning Polyurethane And Polyester Coatings, Yixing Tang Jan 2013

Self-Cleaning Polyurethane And Polyester Coatings, Yixing Tang

Electronic Thesis and Dissertation Repository

Self-cleaning titanium dioxide (TiO2) based polyurethane and polyester nanocomposites were synthesized, characterized and tested in this thesis. A monomer functionalization method (“grafting from” polymerization) was used for synthesizing both novel nano-TiO2 coordinated polyurethanes (nano-TiO2-PU) and nano-TiO2/polyester nanocomposites. This technique provides the advantage of directly attaching nanoparticles to the polymer backbone.

For polyurethane synthesis, two different methods (one-shot and pre-polymer) were explored. Using several characterization techniques, product from the pre-polymer method showed better mechanical properties; therefore, the pre-polymer method was chosen for subsequent nano-TiO2-PU synthesis. In the nano-TiO2-PU synthesis, the …


Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder Jan 2013

Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder

Articles

A novel ambient pressure microwave-assisted technique is developed in which silver and indium modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional …


Modeling And Design Of Photocatalytic Reactors For Air Purification, Yangyang Zhang Jan 2013

Modeling And Design Of Photocatalytic Reactors For Air Purification, Yangyang Zhang

USF Tampa Graduate Theses and Dissertations

Photocatalysis is a promising technique for the remediation of indoor air pollution. Photocatalysis utilizes semiconductor photocatalysts (such as TiO2 or ZnO) and appropriate light to produce strong oxidizing agents (OH*) that are able to break down organic compounds and inactivate bacteria and viruses. The overall goal of the research is to develop an efficient photocatalytic reactor based on mass transfer for indoor air purification. This study has focused on the enhancement of the effectiveness of the photocatalytic process by the introduction of artificial roughness on the reactor catalyst surface. The major effect of artificial roughness elements on the catalytic …


Photocalytic Degradation Of Malic Acid Under Thin Coated Tio2, Vanessa Silveira Rodgher Dec 2012

Photocalytic Degradation Of Malic Acid Under Thin Coated Tio2, Vanessa Silveira Rodgher

Electronic Thesis and Dissertation Repository

Opaque fluids have a limited irradiation transmission. Thus, their decontamination employing near UV irradiation poses significant technical challenges. In the present study, a thin UV-transparent/waterproof glue layer coated with a 1.5 wt% of TiO2 and a new PhotoReactor Cell were implemented. TiO2 irradiation in the PhotoReactor Cell was effected on the TiO2 particle side, not directly in contact with the fluid, allowing the postulation of an “h+” site mobility mechanism on photocatalysis.

Photocatalytic degradation experiments with malic and malonic acid in water at 10, 20, 30 and 40 ppm showed the complete degradation of malic …


Nano Tio2/Graphene Composites For Photovoltaic And Photocatalytic Materials, Nasrin Farhangi Sep 2012

Nano Tio2/Graphene Composites For Photovoltaic And Photocatalytic Materials, Nasrin Farhangi

Electronic Thesis and Dissertation Repository

Graphene has been recognized as one of the most exciting carbon based materials of the present decade due to its unique electronic, mechanical and thermal properties. High surface area exfoliated graphene sheets with controllable surface functionality is an attractive two-dimensional surface for attaching different metals and semiconductors for improving the performance of catalysts, sensors, photoelectronic and energy conversion devices. Graphene is an ideal material which can be used for improving various metal oxide properties such as those of titania (TiO2). TiO2/graphene composites have shown excellent properties compared to bare TiO2 in various applications. In high …