Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Nickel

Missouri University of Science and Technology

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Ultrathin Conductive Ceo₂ Coating For Significant Improvement In Electrochemical Performance Of Limn₁.₅Ni₀.₅O₄ Cathode Materials, Rajankumar L. Patel, Sai Abhishek Palaparty, Xinhua Liang Jan 2017

Ultrathin Conductive Ceo₂ Coating For Significant Improvement In Electrochemical Performance Of Limn₁.₅Ni₀.₅O₄ Cathode Materials, Rajankumar L. Patel, Sai Abhishek Palaparty, Xinhua Liang

Chemical and Biochemical Engineering Faculty Research & Creative Works

LiMn1.5Ni0.5O4 (LMNO) has a huge potential for use as a cathode material in electric vehicular applications. However, it could face discharge capacity degradation with cycling at elevated temperatures due to attacks by hydrofluoric acid (HF) from the electrolyte, which could cause cationic dissolution. To overcome this barrier, we coated 3-5 micron sized LMNO particles with a ∼3 nm optimally thick and conductive CeO2 film prepared by atomic layer deposition (ALD). This provided optimal thickness for mass transfer resistance, species protection, and mitigation of cationic dissolution at elevated temperatures. After 1,000 cycles of chargedischarge between …