Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei Sep 2022

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this work, Pt nanoparticles were loaded on SiO2, TiO2-thin-film-modified SiO2 (TiO2-SiO2), or ZrO2-thin-film-modified SiO2 (ZrO2-SiO2) particles and the composites were investigated for sequential adsorption and desorption/catalytic oxidation of benzene. The SiO2 was prepared via sol–gel method, while TiO2-SiO2 and ZrO2-SiO2 were synthesized via atomic layer deposition (ALD) thin film coating of TiO2 or ZrO2 on SiO2 particles substrate. In the sequential capture-reaction tests, the materials were first exposed to ca. 500 ppmv benzene …


Analyzing The Surface Chemistry Of Ni-Fe Hydroxide Alloy Nanoparticles As Catalysts For The Oxygen Evolution Reaction By X-Ray Photoelectron Spectroscopy Analysis, Lauren B. Shepard May 2022

Analyzing The Surface Chemistry Of Ni-Fe Hydroxide Alloy Nanoparticles As Catalysts For The Oxygen Evolution Reaction By X-Ray Photoelectron Spectroscopy Analysis, Lauren B. Shepard

Chemical Engineering Undergraduate Honors Theses

Water electrolysis has been proposed as a renewable source of hydrogen, a possible replacement to harmful fossil fuels. This process can be broken down into two half reactions, the hydrogen evolution reaction and the oxygen evolution reaction. Because the oxygen evolution reaction has slow kinetics and a high overpotential to overcome, a catalyst is needed to speed up the kinetics and ensure faster and more efficient production of molecular hydrogen. The use of Ni-Fe hydroxide alloy nanoparticles as a catalyst has been shown to significantly improve the efficiency of the reaction by decreasing the overpotential, making the process more energy …