Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir Dec 2022

Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir

All Dissertations

Advances in extraction of shale oil and gas has increased the production of geographically stranded natural gas (primarily consisting of methane (C1) and ethane (C2)) that is burned on site. A potential utilization strategy for shale gas is to convert it into fuel range hydrocarbons by catalytic dehydrogenation followed by oligomerization by direct efficient catalysts. This work focuses on understanding metal cation catalysts supported on metal-organic framework (MOF) NU-1000 that will actively and selectively do this transformation under mild reaction conditions, while remaining stable to deactivation (via metal agglomeration or sintering). I built computational models validated by experimental methods to …


Supported Metal Bifunctional And Bimetallic Catalysts With Precisely Controlled Structures And Properties, Anhua Dong Oct 2022

Supported Metal Bifunctional And Bimetallic Catalysts With Precisely Controlled Structures And Properties, Anhua Dong

Theses and Dissertations

In heterogenous catalysis, metallic nanomaterials play vital roles in numerous chemical processes. However, monofunctional catalysts are greatly impeded in their applications especially in the systems including tandem and/or sequential reaction steps. Besides, the catalytic performance can also be greatly influenced by the particle size, morphology, and geometry of the surface metal atoms.

The goal of this work is to synthesize bifunctional or bimetallic nanoparticles with high metal dispersion and homogenous alloys by rational synthetic strategies to facilitate the catalyst function. Strong electrostatic adsorption (SEA) is an effective and facile methodology to produce well dispersed and uniform nanoparticles. Metal-acid bifunctional catalysts …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei Sep 2022

Atomic Layer Deposited Pt/Tio2-Sio2 And Pt/Zro2-Sio2 For Sequential Adsorption And Oxidation Of Vocs, Busuyi O. Adebayo, Han Yu, Ali A. Rownaghi, Xinhua Liang, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

In this work, Pt nanoparticles were loaded on SiO2, TiO2-thin-film-modified SiO2 (TiO2-SiO2), or ZrO2-thin-film-modified SiO2 (ZrO2-SiO2) particles and the composites were investigated for sequential adsorption and desorption/catalytic oxidation of benzene. The SiO2 was prepared via sol–gel method, while TiO2-SiO2 and ZrO2-SiO2 were synthesized via atomic layer deposition (ALD) thin film coating of TiO2 or ZrO2 on SiO2 particles substrate. In the sequential capture-reaction tests, the materials were first exposed to ca. 500 ppmv benzene …


Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan Aug 2022

Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan

McKelvey School of Engineering Theses & Dissertations

This study interprets the observed behavior of solvent extraction of lignin from hardwoods by adapting the framework of the FLASHCHAIN theory (Niksa and Kerstein, 1991; Niksa, 2017). A constitution submodel specifies distributions of molecular weight and reactive sites for native lignin. The model simulates delignification as depolymerization of lignin macromolecules into fragments small enough to be soluble. This process competes with intrachain condensation that consumes labile bridges without forming new fragments, and with recombination that forms larger chains and inhibits further depolymerization. After the soluble fragments are transported from the particle into the bulk solvent, all chemistry continues as long …


Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb Aug 2022

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene, …


Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain May 2022

Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain

Electronic Theses and Dissertations

My long-term goal is to develop catalytic systems to produce renewable energy for a sustainable society. The overall research objective of my dissertation is to advance understanding of Lewis acidic materials for (1) conversion of renewable lignin into phenolics and (2) enhanced cycling stability of lithium metal batteries to safely store renewable electricity from wind and solar, thereby laying the groundwork for our transition to a sustainable society. Petroleum is a conventional feedstock for current transportation fuels (gasoline, diesel, and jet fuels). However, petroleum is a finite resource and produces greenhouse gases (CO2 and CH4) upon processing, …


Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta May 2022

Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta

Electronic Theses and Dissertations

Mass industrialization over the last few centuries has created a global economy which is dependent upon fossil fuels to satisfy an exponentially increasing demand for energy. Aside from the possible depletion of this finite resource, the combustion of fossil fuels releases greenhouse gases into the atmosphere which cause the global temperature to rise – a phenomenon which has already begun to create geologic and geopolitical instability and shows no signs of abatement. One proposed method to rid humanity of its dependence on fossil fuels is to use green hydrogen as an energy carrier. In this scheme, excess electricity from a …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel Jan 2022

Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel

Graduate Theses, Dissertations, and Problem Reports

The novel method of using a perovskite exsolution catalyst, strontium titanium nickel oxide (STNO), proved capable of simultaneously producing carbon nanotubes (CNTs) and COx-free hydrogen during methane decomposition under microwave irradiation. An optimization of common perovskite materials was conducted for microwave-responsiveness with the results reported in this study. Out of the materials screened, strontium titanium nickel oxide (STNO) was the best candidate to achieve an acceptable methane conversion rate as well as a decent responsiveness to microwave. STNO was further optimized through Ni content, reduction dwell time, and reduction temperature to produce the best methane conversion and CNT …