Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu Dec 2019

Contemporary Problems In Aerosol Aggregation And Gelation, Pai Liu

McKelvey School of Engineering Theses & Dissertations

Aggregation of nanoparticles in aerosols is a fundamental phenomenon with important implications to diverse fields ranging from material synthesis to pollutant control. The past few decades have witnessed extensive research on investigating the structure and growth mechanism of aerosol aggregates with sizes spanning across several orders of magnitude. This dissertation focuses on some contemporary problems that remain unaddressed in this topical area. Aerosol aggregates in sub-micron regimes, which are formed via the irreversible collision and aggregation of solid nanoparticle monomers, are fractal-like in their morphology. A mathematical description of this seemingly random structure dates to the seminal works by Forest …


Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng Oct 2019

Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng

Theses and Dissertations

Anion exchange membrane fuel cells (AEMFCs) have shown significant promise to provide clean, sustainable energy for grid and transportation applications – and at a lower theoretical cost than more established proton exchange membrane fuel cells (PEMFCs). Adding to the excitement around AEMFCs is the extremely high peak power that can now be obtained (> 3 W cm-2) and continuously improving durability (1000+ h), which has made the future deployment of AEMFCs in real-world applications a serious consideration. For some applications (e.g. automotive), the most critical remaining practical issue with AEMFCs is understanding and mitigating the effects of atmospheric CO2 (in …


Improving Boron For Combustion Applications, Kerri-Lee Annique Chintersingh Aug 2019

Improving Boron For Combustion Applications, Kerri-Lee Annique Chintersingh

Dissertations

Boron has received much attention as a potential additive to explosives and propellants due to its high theoretical gravimetric and volumetric heating values. The challenge, however, is that boron particles tend to agglomerate, have lengthy ignition delays and very low combustion rates. Prior research indicates that boron’s long ignition delays are due to its inhibiting naturally occurring oxide layer, impeding the diffusion of reactants for oxidation. For combustion, current studies report that boron particles have two consecutive stages, but the actual reaction mechanism is poorly understood. Despite many years of relevant research, quantitative combustion data on micron-sized boron particles are …


Influence Of Frictional Or Rotational Kinetic Energy On Wellbore-Fluid/Temperature Profiles During Drilling Operations, Ahmed Q. Al Saedi, Ralph E. Flori, C. Shah Kabir Jun 2019

Influence Of Frictional Or Rotational Kinetic Energy On Wellbore-Fluid/Temperature Profiles During Drilling Operations, Ahmed Q. Al Saedi, Ralph E. Flori, C. Shah Kabir

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Temperature-profile distributions in a wellbore during drilling operations might take different forms when applying the energy balance in the overall system. For steady-state conditions, wherein the wellbore is considered a closed system, adding any source of additional energy to this system can influence the predicted temperature profiles. This study presents a new analytical model to investigate the influence of rotational energy arising from the drillstring operation on the wellbore-temperature behavior.

A significant part of the drilling operation is rotation of the drillstring. Depending on the drilling rig, various equipment provides this kind of energy, such as the rotary table or …


Pyrolysis Kinetics Of Live And Dead Wildland Vegetation From The Southern United States, Elham Amini, Mohammad-Saeed Safdari, David R. Weise, Thomas H. Fletcher Jan 2019

Pyrolysis Kinetics Of Live And Dead Wildland Vegetation From The Southern United States, Elham Amini, Mohammad-Saeed Safdari, David R. Weise, Thomas H. Fletcher

Faculty Publications

The fundamental combustion behavior of live wildland vegetation is not fully understood. Since the combustion process during wildland fire starts with pyrolysis, there is a need for better understanding of pyrolysis to develop improved wildland fire models. The kinetics of pyrolysis of live and dead wildland vegetation has not been explored in detail. In this study, the pyrolysis kinetics were determined for 14 different plant species (live and dead) which are all native to the forests in the southern United States. Pyrolysis experiments were carried out in a Thermogravimetric analyzer (TGA) under inert conditions at 5 different heating rates ranged …


Elucidation Of The Catalytic Partial Oxidation Of Methane Utilizing The One-Of-A-Kind Catalytic Shock Tube Technique, Robyn E. Smith Jan 2019

Elucidation Of The Catalytic Partial Oxidation Of Methane Utilizing The One-Of-A-Kind Catalytic Shock Tube Technique, Robyn E. Smith

Dissertations and Theses

The mechanism for the catalytic partial oxidation of methane has been debated in scientific literature for over 20 years. This is a seemingly simple reaction producing CO, CO2, H2 and H2O through either partial oxidation followed by complete oxidation or complete oxidation followed by reforming steps. What is happening when the reaction is allowed to occur in an environment absent of transport limitations, absent of temperature gradients and temperature changes, absent of boundary layers must be understood and, until now, has yet to be achieved in one experimental technique.

A novel method using a one …