Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Liquid Metal Electrodes For Rechargeable Batteries, Rutooj Deshpande, Juchuan Li, Yang-Tse Cheng Sep 2014

Liquid Metal Electrodes For Rechargeable Batteries, Rutooj Deshpande, Juchuan Li, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Patents

An electrode for a lithium ion battery includes a liquid metal having a melting point that is below the operating temperature of the battery, which transforms from a liquid to a solid during lithiation, and wherein the liquid metal transforms from a solid to a liquid during delithiation.


A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge Aug 2014

A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge

Chemical and Materials Engineering Faculty Publications

The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al2O3 films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple …


Electrospinning Jets And Polymer Nanofibers, Darrell Reneker, Alexander Yarin Jul 2014

Electrospinning Jets And Polymer Nanofibers, Darrell Reneker, Alexander Yarin

Darrell Hyson Reneker

In electrospinning, polymer nanofibers are formed by the creation and elongation of an electrified fluid jet. The path of the jet is from a fluid surface that is often, but not necessarily constrained by an orifice, through a straight segment of a tapering cone, then through a series of successively smaller electrically driven bending coils, with each bending coil having turns of increasing radius, and finally solidifying into a continuous thin fiber. Control of the process produces fibers with nanometer scale diameters, along with various cross-sectional shapes, beads, branches and buckling coils or zigzags. Additions to the fluid being spun, …