Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan Oct 2014

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan

Journal of Electrochemistry

Developing low-cost catalysts with high electrocatalytic activity for oxygen reduction reaction (ORR) has recently attracted much attention because the sluggish ORR currently limits the performance and commercialization of fuel cells and metal-air batteries as well. Nitrogen doped carbon materials have been considered as a promising candidate for the replacement of high-cost and scarce Pt-based catalysts although their electrocatalytic activity still needs to be much improved. In this work, an improved nitrogen-doped graphene/carbon nanotubes composite (N-rGO/CNT) was developed as an efficient ORR electrocatalyst. It was found that the ORR activity of N-rGO/CNT composite could be significantly enhanced by introducing iron in …


Carbon Nanotubes On Carbon Nanofibers: A Novel Structure Based On Electrospun Polymer Nanofibers, H. Hou, Darrell Reneker Jul 2014

Carbon Nanotubes On Carbon Nanofibers: A Novel Structure Based On Electrospun Polymer Nanofibers, H. Hou, Darrell Reneker

Darrell Hyson Reneker

No abstract provided.


Electrospinning Jets And Polymer Nanofibers, Darrell Reneker, Alexander Yarin Jul 2014

Electrospinning Jets And Polymer Nanofibers, Darrell Reneker, Alexander Yarin

Darrell Hyson Reneker

In electrospinning, polymer nanofibers are formed by the creation and elongation of an electrified fluid jet. The path of the jet is from a fluid surface that is often, but not necessarily constrained by an orifice, through a straight segment of a tapering cone, then through a series of successively smaller electrically driven bending coils, with each bending coil having turns of increasing radius, and finally solidifying into a continuous thin fiber. Control of the process produces fibers with nanometer scale diameters, along with various cross-sectional shapes, beads, branches and buckling coils or zigzags. Additions to the fluid being spun, …


Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier Jan 2014

Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier

Jean-Philippe Tessonnier

The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …