Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Theoretical Investigation Of The Catalytic, Liquid-Phase Hydrodeoxygenation Of Organic Acids And Esters, Sina Behtash Dec 2014

Theoretical Investigation Of The Catalytic, Liquid-Phase Hydrodeoxygenation Of Organic Acids And Esters, Sina Behtash

Theses and Dissertations

With worldwide fossil fuel resources dwindling and greenhouse gas emissions rising, it is urgent to find renewable liquid fuel alternatives from e.g. biomass to meet the world’s growing energy demand. Lipid feedstocks and pyrolysis oils from woody biomass can be utilized for the production of second-generation biofuels via a catalytic hydrodeoxygenation (HDO) process. The conversion of fatty acids and esters plays an important role in the activity and selectivity of these processes. Understanding the HDO reaction mechanism of organic acids and esters on metal surfaces is a prerequisite for the rational design of new HDO catalysts specifically designed for upgrading …


Gasification Of Biomass, Coal, And Petroleum Coke At High Heating Rates And Elevated Pressure, Aaron D. Lewis Nov 2014

Gasification Of Biomass, Coal, And Petroleum Coke At High Heating Rates And Elevated Pressure, Aaron D. Lewis

Theses and Dissertations

Gasification is a process used to convert any carbonaceous species through heterogeneous reaction to obtain the desired gaseous products of H2 and CO which are used to make chemicals, liquid transportation fuels, and power. Both pyrolysis and heterogeneous gasification occur in commercial entrained-flow gasifiers at pressures from 4 to 65 atm with local gas temperatures as high as 2000 °C. Many gasification studies have been performed at moderate temperatures, heating rates, and pressures. In this work, both pyrolysis and char gasification experiments were performed on coal, petroleum coke, and biomass at conditions pertinent to commercial entrained-flow gasifiers. Rapid biomass pyrolysis …


Factors Affecting Bed Agglomeration In Bubbling Fluidized Bed Biomass Boilers, Alejandro Montes Aug 2014

Factors Affecting Bed Agglomeration In Bubbling Fluidized Bed Biomass Boilers, Alejandro Montes

Electronic Thesis and Dissertation Repository

Agglomeration of bed materials at high temperature is one of the most important and challenging problems for fluidized-bed biomass boilers for thermal/power generation. Inorganic alkali components from the fuel can be problematic as they form low-melting alkali compounds. In the present study, the critical amount of liquid (molten ash in real biomass boiler operations) that would result in severe bed agglomeration and defluidization was studied in two small pilot-scales bubbling fluidized bed (BFB) rigs, one operated at room temperature using glycerol-water to simulate molten ash and the other operated at elevated temperatures using low melting-point salt (KOH) to simulate molten …


Theoretical Investigation Of Heterogeneous Catalysis At The Solid–Liquid Interface For The Conversion Of Lignocellulosic Biomass Model Molecules, Muhammad Faheem Aug 2014

Theoretical Investigation Of Heterogeneous Catalysis At The Solid–Liquid Interface For The Conversion Of Lignocellulosic Biomass Model Molecules, Muhammad Faheem

Theses and Dissertations

Catalytic conversion of biomass-derived oxygenates to fuels and value-added chemicals is a promising strategy in the search for renewable and sustainable energy sources. Most relevant catalytic processes are carried out in an aqueous environment using supported transition metal catalysts. The reaction network consists of multiple series and parallel pathways leading to formation of hydrogen, alkanes, and lighter oxygenates. The final product distribution ultimately depends on the sequence and competition of C−C, C−O, C−H, and O−H bonds scissions. Ethylene glycol (EG) is the simplest model molecule of various biomass-derived polyols that has a C:O stoichiometry of 1:1 and contains all relevant …


Gas-Phase, Catalytic Hydrodeoxygenation Of Propanoic Acid Over Supported Group Viii Noble Metals, Yuliana K. Lugo José Aug 2014

Gas-Phase, Catalytic Hydrodeoxygenation Of Propanoic Acid Over Supported Group Viii Noble Metals, Yuliana K. Lugo José

Theses and Dissertations

Recent advances for the deoxygenation of biomass, have demonstrated that hydrodeoxygenation (HDO) is one of the most promising route for the upgrading pyrolysis bio-oils. Catalytic hydrodeoxygenation of pyrolysis bio-oil have shown to be an efficient and economical process, since the raw materials consist mainly of waste. Propanoic Acid (PAc) is considered as one of the main constituents of pyrolysis bio-oils. However, these carboxylic acids are extremely corrosive and difficult to deoxygenate. Therefore, much effort have been given to the development of novel catalytic techniques, to improve the activity, stability and selectivity for the HDO of carboxylic acids.

This dissertation explores …


The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd Aug 2014

The Role Of Surface Area In Catalytic Gasification Of Biomass, Elizabeth A. Wachs, Nitish Kumar, Indraneel Sircar, Prithviraja Basak, Jay P. Gore Phd

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gasification of biomass has the potential to provide a carbon-negative source of liquid fuels. The current limited use of gasification is due in part to the high temperatures necessary to achieve high conversion levels. These temperatures can be lowered by the use of catalysts, but the mechanisms by which catalysts affect the reaction rate are not fully understood. Here, the structural component of potassium carbonate’s role in the gasification process was examined. Samples of pinewood sawdust were impregnated with potassium carbonate, then pyrolyzed with N2 in a fixed bed reactor at 750°C (heater thermocouple reading). Half of the char was …


Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor May 2014

Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor

Doctoral Dissertations

Membrane technology has become increasingly attractive in several applications including water filtration, food industry, oil and gas, and biomedical applications. Most recently the quest for renewable, bioenergy has called for use of membranes in biomass pretreatment and other stages of producing biofuel. The success and advancement of the membrane technology for these various applications has, however, been impeded by the fouling of membranes, which causes the pores in the microporous structure to block, resulting in reduced efficiency, and in some cases, total failure of the membranes system. This challenge leads to a tremendous increase in the cost of using membranes …


Electrocatalytic Processing Of Renewable Biomass-Derived Compounds For Production Of Chemicals, Fuels And Electricity, Le Xin Jan 2014

Electrocatalytic Processing Of Renewable Biomass-Derived Compounds For Production Of Chemicals, Fuels And Electricity, Le Xin

Dissertations, Master's Theses and Master's Reports - Open

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with …


Lab-Scale Fast-Hydropyrolysis And Vapor-Phase Catalytic Hydrodeoxygenation For Producing Liquid Fuel Range Hydrocarbons From Intact Biomass, Vinod Kumar Venkatakrishnan Jan 2014

Lab-Scale Fast-Hydropyrolysis And Vapor-Phase Catalytic Hydrodeoxygenation For Producing Liquid Fuel Range Hydrocarbons From Intact Biomass, Vinod Kumar Venkatakrishnan

Open Access Dissertations

Liquid transportation fuels are primarily produced from petroleum-based non-renewable carbon sources. Sustainably available lignocellulosic biomass, as a renewable form of atmospheric carbon, could be utilized to produce hydrocarbon-based fuels with high energy density. One of the process options for this conversion is the H2Bioil process, where biomass is rapidly heated in a hydrogen environment to produce fast-hydropyrolysis vapors that are catalytically upgraded in downstream hydrodeoxygenation (HDO) to produce hydrocarbons. This process has been modeled to have high carbon and energy efficiencies of ~70% and ~75%, respectively.

This dissertation presents the results of a lab-scale experimental proof-of-concept for the H2Bioil process …


Pretreatment Of Cellulosic Biomass By Iron-Containing Magnetic Ionic Liquid Dissolution, Christopher Roth Riley Jan 2014

Pretreatment Of Cellulosic Biomass By Iron-Containing Magnetic Ionic Liquid Dissolution, Christopher Roth Riley

Electronic Theses and Dissertations

The focus of this project is to determine the effectiveness in the preprocessing of biomass when magnetic ionic liquids (MIL) (1-butyl-3-methylimidazolium tetrachloroferrate (Bmim[FeCl4]) and 1-ethyl-3-methylimidazolium tetrachloroferrate (Emim[FeCl4])) are used as a green solvent. Lignocellulose is a promising starting material for a plethora of products, ranging from biofuels to custom chemicals; however, lignocellulose is resistant to enzymatic degradation. Various biomass-preprocessing techniques such as microbial, mechanical, and chemical pretreatment are used for enhancing the digestibility of biomass to sugars for ethanol production. Varieties of ionic liquids have demonstrated the ability to fragment lignocellulose. However, after fragmentation, separation of biomass and ionic liquids …


Co2 Char Gasification Rates Of Sawdust, Switchgrass, And Corn Stover In A Pressurized Entrained-Flow Reactor, Thomas H. Fletcher, Aaron D. Lewis, Emmett G. Fletcher Jan 2014

Co2 Char Gasification Rates Of Sawdust, Switchgrass, And Corn Stover In A Pressurized Entrained-Flow Reactor, Thomas H. Fletcher, Aaron D. Lewis, Emmett G. Fletcher

Faculty Publications

An entrained-flow flat-flame burner reactor was used to measure apparent CO2 gasification rates of near-spherical biomass chars of poplar sawdust, switchgrass, and corn stover using particle residence times1258−1891 K and 6.1− 13.5 atm, respectively. A new method was developed to produce near-spherical particles from nonspherical biomass chars. The apparent CO2 gasification rates for the three biomass chars with mean diameters near 100 μm were fit to a global first-order model, and the optimal kinetic parameters are reported. The measured gasification rate of poplar sawdust was about 3.9 times faster than that of switchgrass char, but only about 20% faster than …