Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

1992

Modelling

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Thermal Mathematical Modeling Of A Multicell Common Pressure Vessel Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White Jan 1992

Thermal Mathematical Modeling Of A Multicell Common Pressure Vessel Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White

Faculty Publications

A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.


Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White Jan 1992

Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White

Faculty Publications

A mathematical model is used to predict parameter sensitivities and optimal design parameters for a hydrogen/oxygen alkaline fuel cell. A sensitivity analysis of the various transport and electrode kinetic parameters indicates which parameters have the most influence on the predicted current density and over which range of potentials these parameters affect the fuel-cell performance the most. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The effect of various design parameters on the limiting current density are investigated to determine if optimal values exist for the parameters. …


Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White Jan 1992

Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White

Faculty Publications

The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilizationis predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the …


Comparison Of Heat-Fin Materials And Design Of A Common-Pressure-Vessel Nickel-Hydrogen Battery, Junbom Kim, Ralph E. White Jan 1992

Comparison Of Heat-Fin Materials And Design Of A Common-Pressure-Vessel Nickel-Hydrogen Battery, Junbom Kim, Ralph E. White

Faculty Publications

A two-dimensional, axisymmetric, and time-dependent thermal model was developed to study the temperature behavior of the cylindrically shaped common-pressure-vessel nickel-hydrogen cell. A differential-energy-balance equation was used as the governing equation. A finite-element software package called PDE/Protran was used to solve this model. Different materials such as copper, copper beryllium, silver, and sterling silver were compared as heat-fin materials. The heat-fin geometry (thickness and height) and spacing were tested to find a design that yielded an acceptable temperature gradient inside a nickel-hydrogen cell. Pulse heat-generation rates were tested and correlated with the time-dependent heat-generation cases.


A Mathematical Model Of A Cuo/Cu Vaporvolt Cell, Makoto Kawanami, Trung V. Nguyen, Ralph E. White Jan 1992

A Mathematical Model Of A Cuo/Cu Vaporvolt Cell, Makoto Kawanami, Trung V. Nguyen, Ralph E. White

Faculty Publications

A new battery named "Vaporvolt"b cell is in the early stage of its development. A mathematical model of a CuO/CuVaporvolt cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge.A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the mostinfluence on the predicted energy and power density of the Vaporvolt cell. This information can be used to decide whichparameters should be optimized or determined more accurately through further modeling or experimental studies. Theoptimal thicknesses of electrodes and separator, the concentration of the electrolyte, and …