Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Electrospinning Nanofibers From Chitosan-Hyaluronic Acid Complex Coacervates, Juanfeng Sun Aug 2019

Electrospinning Nanofibers From Chitosan-Hyaluronic Acid Complex Coacervates, Juanfeng Sun

Masters Theses

Electrospun nanofibers have been used for many applications, but a reliance on organic solvents limits their use in biomedical fields. In this study, we successfully electrospun nanofibers from aqueous chitosan-hyaluronic acid complex coacervates. We studied how solvent’ properties affected the average nanofiber diameter by using pure water as a solvent versus ethanol-water solutions. Experimentally, we investigated the effect of electrospinning apparatus parameters, such as how the applied voltage affected fiber formation and morphology. The smallest average nanofiber diameter was determined to be around 115 ± 30 nm when 3 wt% ethanol coacervate samples were electrospun using the applied voltage of …


Developing A Portable Prototype To Utilize An Electrospun Colorimetric Sensor For The Detection Of Trihalomethanes In Water, Amanda Svensson Jan 2019

Developing A Portable Prototype To Utilize An Electrospun Colorimetric Sensor For The Detection Of Trihalomethanes In Water, Amanda Svensson

Williams Honors College, Honors Research Projects

Trihalomethane (THM) detection in water is important due to the potential health effects caused by their presence, including increased cancer risk. A cheap, quick, and portable method of identifying THM concentration at the Environmental Protection Agency limit of 80 parts per billion (ppb) will improve detection and water treatment. Electrospinning was used to make nanofiber membranes using a 2.6 wt% polypropylene solution. These membranes were utilized in the Fujiwara reaction, which creates a color change in the presence of THMs, to detect the THM bromoform in water. The color intensity of the reaction was quantified for 250 and 80 ppb …


Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi Jan 2019

Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi

Theses and Dissertations

Electrospinning has been the focus of countless studies for the past decades for applications, including but not limited to, filtration, tissue engineering, and catalysis. Electrospinning is a one-step process for producing nano- and/or micro-fibrous materials with diameters ranging typically from 50 to 5000 nm. The simulation algorithm presented here is based on a novel mass-spring-damper (MSD) approach devised to incorporate the mechanical properties of the fibers in predicting the formation and morphology of the electrospun fibers as they travel from the needle toward the collector, and as they deposit on the substrate. This work is the first to develop a …