Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Conductive Inks And Films Via Intense Pulsed Light., Gabriel L. Draper Dec 2016

Conductive Inks And Films Via Intense Pulsed Light., Gabriel L. Draper

Electronic Theses and Dissertations

This research focuses on the investigation of Earth abundant copper and carbon based nanomaterials that are subjected to Intense Pulsed Light Processing to create conductive films, as future flexible electronics and renewable energy solutions would benefit from the quick and scalable production of conductive films. Use of nanomaterials in their oxide/hydroxide forms leads to higher stability in aqueous inks for efficient large area solution deposition. IPL Processing utilized 2044 μs pulses ranging from 589 J - 2070 J over an area of 1.9 cm x 30.5 cm, with energy densities of 10.1, 12.8, 15.8, 19.2, 22.9, 26.8, 31.1 and 35.7 …


Scalable Production And Applications Of Metal Oxide Nanowires., Tu Quang Nguyen Dec 2016

Scalable Production And Applications Of Metal Oxide Nanowires., Tu Quang Nguyen

Electronic Theses and Dissertations

Metal oxide nanowires are materials of interest in number of applications such as lithium ion batteries, solar cells, catalyst support, and gas sensing due to their unique charge transport properties and short diffusion length scales. To incorporate nanowires for any applications, one would need hundreds of grams to kilograms of these nanowires. However, state-of-the-art methods for producing metal oxide nanowires are limited to producing only milligrams to a gram in a batch. Hence, there is a need to develop scalable and cost effective processes and reactors to address this challenge. Direct gas phase oxidation of zinc metal powders using a …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Model Validation And Transition To Turbulence In Orbiting Culture Dishes., Jonathan Michael D. Thomas May 2016

Model Validation And Transition To Turbulence In Orbiting Culture Dishes., Jonathan Michael D. Thomas

Electronic Theses and Dissertations

Wall shear stress (WSS) is commonly accepted as the primary influence affecting characteristics of anchored endothelial cells when subjected to fluid flow. Orbital shakers are commonly used to study cellular responses due to their ease of use, ability to run several experiments simultaneously, and since they exert physiologically relevant oscillatory shear. These studies require comprehensive resolution of WSS, however the fluid dynamics inside orbiting culture dishes has not yet been well described since the flow is complex and difficult to quantify analytically. A computational fluid dynamics (CFD) model of flow in an orbiting dish has been developed that yields detailed …


Mixing And Mean Age In Multiphase Systems., David Chandler Russ May 2016

Mixing And Mean Age In Multiphase Systems., David Chandler Russ

Electronic Theses and Dissertations

Mean age theory is a useful tool for analyzing mixing by providing spatial distributions of time based data for material inside a system using a steady-state CFD approach, but has been limited to single phase systems. Mean age theory was extended here to multiphase systems by defining the scalar tracer concentration independently for individual phases, which allows mean age to be solved at steady-state for each phase independently within a multiphase system. The theory was validated by comparing multiphase mean age (MMA) distributions extracted from spatial distributions determined computationally at two locations where RTDs were experimentally measured in a water-oil …