Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun Jan 2022

Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun

Research outputs 2022 to 2026

In this paper, a clean process based on the steam-mediated reactions for simultaneous HCl and KCl production using the potassium (K)-containing phosphorous rock as a precursor is proposed. Through hydrochloric acid (HCl) leaching, not only the generation of H3PO4and CaCl2 (via further precipitation) were realized but also the acid-insoluble residue [phosphorous-rock slag (PS)] rich in elements, that is, K, Al, Si, and so on, in the form of microcline (KAlSi3O8) and quartz (SiO2) was obtained and became readily available for further HCl and KCl generation. Over 95 % of …


Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou Jan 2022

Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou

Research outputs 2022 to 2026

Artificial intelligence (AI)-assisted materials design and discovery methods can come to the aid of global concerns for introducing new efficient materials in different applications. Also, a sustainable clean future requires a transition to a low-carbon economy that is material-intensive. AI-assisted methods advent as inexpensive and accelerated methods in the design of new materials for clean energies. Herein, the emerging research area of AI-assisted material discovery with a focus on developing clean energies is discussed. The applications, advantages, and challenges of using AI in material discovery are discussed and the future perspective of using AI in clean energy is studied. This …


Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney Jul 2019

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use a thermoelectric generator module to analyze the relationship between thermal and electrical energies. Using data collection sensors and analysis software, students will investigate the relationship between the temperature gradient across a thermoelectric generator module and the resulting electrical potential. Students will then use their data and analysis to solve problems relating to waste thermal energy in electrical systems and communicate their work to their peers and teacher.


Go With The Flow –Thermoelectric Energy, Shawn Bell Jul 2016

Go With The Flow –Thermoelectric Energy, Shawn Bell

Middle School Lesson Plans

In this unit, students will learn how thermal energy be transferred and transformed. They will carry out investigations to gather evidence to support an explanation about direct conversion of heat into electrical energy. They will develop a model that shows the components of the system and changes in the system being investigated, and they will use evidence from the investigation to construct an explanation for how the energy flows.


Greenscreen: Software To Improve Campus Water And Energy Use, Andrew T. Silva May 2014

Greenscreen: Software To Improve Campus Water And Energy Use, Andrew T. Silva

University Scholar Projects

Water and energy are intrinsically linked together. Energy is required to produce clean water and water is used heavily to generate energy. These two resources are constantly held in check, as they are vital to the sustained operation of towns, cities, and campuses. At the University of Connecticut (UConn), the consumption of water and energy is reduced by an efficient power plant and a brand new water reclamation facility. To reach beyond these accolades, it is essential that a deeper understanding of campus water usage is developed. Linking this knowledge with information about the energy consumption of UConn facilities will …


Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse Jan 2013

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse

Masters Theses 1911 - February 2014

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid …


The Effect Of Reactor Configuration On No Conversion And Energy Consumption In Non-Thermal Plasma Parallel Tube Reactors, Morris D. Argyle, Gui-Bing Zhao, S.V.B. Janardhan Garikipati, Xudong Hu, Maciej Radosz Jun 2005

The Effect Of Reactor Configuration On No Conversion And Energy Consumption In Non-Thermal Plasma Parallel Tube Reactors, Morris D. Argyle, Gui-Bing Zhao, S.V.B. Janardhan Garikipati, Xudong Hu, Maciej Radosz

Faculty Publications

This work shows that the configuration of a pulsed corona discharge reactor strongly affects the rate of electron collision reactions. Experiments involving the decomposition of NO in N2 were performed in a reactor in which the number or parallel reactor tubes varied from 1 to 10 at a constant pressure of 147.6 kPa and ambient temperature. A previously developed lumped model of the reactions accurately predicted the effects of varying the initial concentrations of NO (from 240ppm to 593ppm) and gas residence time (from 1.93 to 742 s). With an increasing number of parallel reactor tubes, the rate of the …