Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods., Thomas Michael Quaid Dec 2023

Assessing The Thermodynamic Potential Of Deep Eutectic Solvents In The Absorption Of Greenhouse Gases Through Computational Methods., Thomas Michael Quaid

Theses and Dissertations

Greenhouse gas (GHG) capture is a fundamental technology in the fight against climate change. Some species of devastating GHGs like fluorinated compounds are released directly to the air from industrial processes. Some GHGs are co-produced in sustainably derived biofuels which require absorptive upgrading. The development of more efficient, cost effective, and environmentally friendly methods of capturing GHG’s from pollutant sources and industrial streams is of utmost importance in the fight against climate change. Deep eutectic solvents have entered the separations stage as potential disruptors to conventional solvent choices for a variety of applications. Deep eutectic solvents (DES) are compounds of …


Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng Oct 2019

Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng

Theses and Dissertations

Anion exchange membrane fuel cells (AEMFCs) have shown significant promise to provide clean, sustainable energy for grid and transportation applications – and at a lower theoretical cost than more established proton exchange membrane fuel cells (PEMFCs). Adding to the excitement around AEMFCs is the extremely high peak power that can now be obtained (> 3 W cm-2) and continuously improving durability (1000+ h), which has made the future deployment of AEMFCs in real-world applications a serious consideration. For some applications (e.g. automotive), the most critical remaining practical issue with AEMFCs is understanding and mitigating the effects of atmospheric CO2 (in …


Measurements And Modeling Of Hydrocarbon Mixture Fluid Properties Under Extreme Temperature And Pressure Conditions, Babatunde A. Bamgbade Jan 2015

Measurements And Modeling Of Hydrocarbon Mixture Fluid Properties Under Extreme Temperature And Pressure Conditions, Babatunde A. Bamgbade

Theses and Dissertations

Knowledge of thermodynamic fluid properties, such as density and phase behavior, is important for the design, operation, and safety of several processes including drilling, extraction, transportation, and separation that are required in the petroleum. The knowledge is even more critical at extreme temperature and pressure conditions as the search for more crude oil reserves lead to harsher conditions. Currently, there is dearth of experimental data at these conditions and as such, the predictive capability of the existing modeling tools are unproven. The objective of this research is to develop a fundamental understanding of the impact of molecular architecture on fluid …


Enhancement Of Mass Transfer And Electron Usage For Syngas Fermentation, James J. Orgill Apr 2014

Enhancement Of Mass Transfer And Electron Usage For Syngas Fermentation, James J. Orgill

Theses and Dissertations

Biofuel production via fermentation is produced primarily by fermentation of simple sugars. Besides the sugar fermentation route, there exists a promising alternative process that uses syngas (CO, H2, CO2) produced from biomass as building blocks for biofuels. Although syngas fermentation has many benefits, there are several challenges that still need to be addressed in order for syngas fermentation to become a viable process for producing biofuels on a large scale. One challenge is mass transfer limitations due to low solubilities of syngas species. The hollow fiber reactor (HFR) is one type of reactor that has the potential for achieving high …


Protein-Surface Interactions With Coarse-Grain Simulation Methods, Shuai Wei Mar 2013

Protein-Surface Interactions With Coarse-Grain Simulation Methods, Shuai Wei

Theses and Dissertations

The interaction of proteins with surfaces is a major process involved in protein microarrays. Understanding protein-surface interactions is key to improving the performance of protein microarrays, but current understanding of the behavior of proteins on surfaces is lacking. Prevailing theories on the subject, which suggest that proteins should be stabilized when tethered to surfaces, do not explain the experimentally observed fact that proteins are often denatured on surfaces. This document outlines several studies done to develop a model which is capable of predicting the stabilization and destabilization of proteins tethered to surfaces. As the start point of the research, part …


Thermodynamic, Sulfide, Redox Potential, And Ph Effects On Syngas Fermentation, Peng Hu Feb 2011

Thermodynamic, Sulfide, Redox Potential, And Ph Effects On Syngas Fermentation, Peng Hu

Theses and Dissertations

Recently, work in ethanol production is exploring the fermentation of syngas (primarily CO, CO2, and H2) following gasification of cellulosic biomass. The syngas fermentation by clostridium microbes utilizes the Wood-Ljungdahl metabolic pathway. Along this pathway, the intermediate Acetyl-CoA typically diverges to produce ethanol, acetic acid, and/or cell mass. To develop strategies for process optimization, a thermodynamic analysis was conducted that provided a detailed understanding of the favorability of the reactions along the metabolic pathway. Thermodynamic analysis provided identification of potentially limiting steps. Once these limiting reactions were identified, further thermodynamic analysis provided additional insights into the ways in which reaction …


The Structure And Stability Of Alpha-Helical, Orthogonal-Bundle Proteins On Surfaces, Shuai Wei Jun 2010

The Structure And Stability Of Alpha-Helical, Orthogonal-Bundle Proteins On Surfaces, Shuai Wei

Theses and Dissertations

The interaction of proteins with surfaces is a major problem involved in protein microarrays. Understanding protein/surface interactions is key to improving the performance of protein microarrays, but current understanding of the behavior of proteins on surfaces is lacking. Prevailing theories on the subject, which suggest that proteins should be stabilized when tethered to surfaces, do not explain the experimentally observed fact that proteins are often denatured on surfaces. In an attempt to develop some predictive capabilities with respect to protein/surface interactions, it was asked in previous works if the stabilization/destabilization of proteins on surfaces could be correlated to secondary structure …


Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens Mar 2008

Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens

Theses and Dissertations

Demonstration of a strategy to perform two-dimensional diode laser tomography using a priori knowledge from symmetry arguments and computational fluid dynamic (CFD) calculations is presented for a flat flame burner. The strategy uses an optimization technique to determine flame diameter and location using a vector quantization approach. Next, the variance in a training set, produced from CFD calculations, is captured using principal components analysis. The information in the training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are shown to agree with traditional thermocouple measurements of the flat flame …


Cycle Performance Of A Pulse Detonation Engine With Supercritical Fuel Injection, Timothy M. Helfrich Mar 2006

Cycle Performance Of A Pulse Detonation Engine With Supercritical Fuel Injection, Timothy M. Helfrich

Theses and Dissertations

Pulse detonation engines (PDE) rely on rapid ignition and formation of detonation waves. Because hydrocarbon fuels are composed typically of long carbon chains that must be reduced in the combustion process, it would be beneficial to create such reduction prior to injection of fuel into the engine. This study focused on PDE operation enhancements using dual detonation tube, concentric-counter-flow heat exchangers to elevate the fuel temperature up to supercritical temperatures. Variation of several operating parameters included fuel type (JP-8, JP-7, JP-10, RP-1, JP-900, and S-8), ignition delay, frequency, internal spiral length, and purge fraction. To quantify the performance, four key …


Thermodynamic Property Prediction For Solid Organic Compounds Based On Molecular Structure, Benjamin T. Goodman Nov 2003

Thermodynamic Property Prediction For Solid Organic Compounds Based On Molecular Structure, Benjamin T. Goodman

Theses and Dissertations

A knowledge of thermophysical properties is necessary for the design of all process units. Reliable property prediction methods are essential because reliable experimental data are often not available due to concerns about measurement difficulty, cost, scarcity, safety, or environment. In particular, there is a lack of prediction methods for solid properties. Predicted property values can also be used to fill holes in property databases to understand more fully compound characteristics. This work is a comprehensive analysis of the prediction methods available for five commonly needed solid properties. Where satisfactory methods are available, recommendations are made; where methods are unsatisfactory in …