Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma Oct 2014

Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma

Open Access Theses

Freeze drying is an important, but expensive, inefficient and time consuming process in the pharmaceutical, chemical and food processing industries. Computational techniques could be a very effective tool in predictive design and analysis of both freeze drying process and equipment. This work is an attempt at using Computational Fluid Dynamics(CFD) and numerical simulations as a tool for freeze drying process and equipment design.

Pressure control is critical in freeze dryers, keeping in view the product stability. In industrial freeze dryers, loss of pressure control can lead to loss of an entire batch. Pressure variation within the chamber could also lead …


Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn Oct 2014

Identifying Conditions To Optimize Lactic Acid Production From Food Waste, Raymond M. Redcorn

Open Access Theses

There is an increased demand for lactic acid for the production of biopolymers and to aid nutrient removal in wastewater treatment. Food waste offers a source of soluble sugars to produce lactic acid, which does not increase land demand, but digestion conditions have yet to be optimized when co-digested with primary sludge. Food waste was collected from cafeteria waste bins, homogenized and seeded with primary sludge. A Box Behnken Response surface design was used to optimize lactic acid production based on pH, temperature, loading rate, and retention time. Subsequent experiments verified and refined those conditions to optimize for both yield …


Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung Oct 2014

Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung

Open Access Theses

Memory functionality is essential for many high-end electronic applications (e.g. , smart phones, personal computers). Particularly, organic nonvolatile memory devices based on polymer ferroelectric materials are a promising approach toward the development of low-cost memory due to the ease of processing and flexibility associated with the device. Here, we will focus on a memory device with a two-component active layer and a diode structure. This ferroelectric diode (FeD) has a nanostructured active layer, composed of ferroelectric and semiconducting polymers, and it can provide easy access to high-performance polymer-based memory devices. In order to create these nanostructured active layers, we …


Solvent System Selection For Xylooligosaccharides Separation By Centrifugal Partition Chromatography Using Conductor-Like Screening Model For Real Solvents, He Zhang Jul 2014

Solvent System Selection For Xylooligosaccharides Separation By Centrifugal Partition Chromatography Using Conductor-Like Screening Model For Real Solvents, He Zhang

Open Access Theses

The production of value-added, bio-based industrial commodity chemicals is an important area in science right now and this study provides an initial step in the recovery of bio-based chemicals from hemicellulose. Hemicellulose is a long chain polymer mostly consisting of xylose, which is a five-carbon sugar, and a variety of other compounds that are ubiquitous in plant life. The hemicellulose polymer chain can be depolymerized into smaller components, called xylooligosaccharides (XOS) with different chain lengths of xylose linked by beta-1-4 glycosidic bonds, using either hot water, or dilute sulfuric acid. The xylooligosaccharides can then be purified from one another from …


Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan Jul 2014

Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan

Open Access Theses

The design and synthesis of electrically-conductive macromolecules can lead to significant improvements in the performance of polymer-based energy conversion devices (e.g., thermoelectric devices). For these organic electronic devices, conjugated polymers have dominated the area of conductive polymers; however, these materials are usually synthesized using conditions that lead to poorly-defined polymers. Furthermore, in these increasingly-standard polymers, the charge transport ability of the polymer thin films is largely affected by the degree of crystallinity, which is a difficult property to control in a reproducible fashion. Therefore, we seek to explore a new class of amorphous, non-conjugated polymers containing a stable radical …


Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash Jul 2014

Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash

Open Access Theses

Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, …


Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun Apr 2014

Mechanistic Study Of The Hydrothermal Reduction Of Palladium On The Tobacco Mosaic Virus, Oluwamayowa Oluwarotimi Adigun

Open Access Theses

Synthesis of nanorods and nanowires is becoming more and more important due to interest in them in a wide range of disciplines. The genetically engineered tobacco mosaic virus (TMV1Cys) provides a template for synthesis of uniform metal nanorods at mild operating conditions and without the use of any expensive technology compared to conventional synthetic methods. The discovery of the hydrothermal synthetic scheme has allowed the production of higher quality nanorods on the TMV template. However, the mechanism for reduction and growth in this process is still not understood. In this paper, the mechanism of synthesis for producing uniform, controllable palladium …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …