Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

University of Tennessee, Knoxville

Hydrogen production

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu May 2022

Electrode Development Of Water Electrolyzer Cells For Low-Cost And High-Efficiency Hydrogen Production, Shule Yu

Doctoral Dissertations

A worldwide increase in energy demand and a latent crisis in the fossil fuel supply have spurred broad research in the renewable energy. Currently, most renewable energy resources (e.g., hydro, wind, solar, tide) face supply challenges as they are known to be intermittent, unstable, and locally shackled, which calls for urgent development in energy storage and conversion. Hydrogen is regarded as an ideal energy carrier with its advantages (e.g., high energy density, environmentally friendliness, and low weight). In practice, the proton exchange membrane electrolyzer cell (PEMEC) is considered to be one of the optimal hydrogen production and energy storage devices …


Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …