Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

University of South Florida

Plasmonics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Nano-Photonic Waveguides For Chemical And Biomedical Sensing, Surya Venkatasekhar Cheemalapati May 2016

Nano-Photonic Waveguides For Chemical And Biomedical Sensing, Surya Venkatasekhar Cheemalapati

USF Tampa Graduate Theses and Dissertations

In this dissertation, advances in the fields of Photonics, and Plasmonics, and specifically, single cell analysis and waveguide sensing will be addressed. The first part of the dissertation is on Finite Difference Time Domain (FDTD) optimization and experimental demonstration of a nano-scale instrument that allows sensing at the cellular and subcellular levels. A new design of plasmonic coupler into a nanoscale waveguide is proposed and optimized using FDTD simulations. Following this, a subcellular nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted fluorescent light for detailed spectrum analysis is fabricated and tested. The nanoendoscope has …


Applications Of Optical Properties From Nanomaterials For Enhanced Activity Of A Titania Photocatalyst Under Solar Radiation, Jon W. Pickering Sep 2015

Applications Of Optical Properties From Nanomaterials For Enhanced Activity Of A Titania Photocatalyst Under Solar Radiation, Jon W. Pickering

USF Tampa Graduate Theses and Dissertations

In recent years, employing advanced oxidation processes (AOPs) as a means of wastewater remediation has emerged as a promising route towards maintaining a sustainable global water management program. The heterogeneous photocatalytic oxidation process has been of particular interest due to the prospective of utilizing solar radiation as the driving force behind the degradation of pollutants. Of the photocatalyst studied to date, TiO2 remains the most attractive material for environmental applications due to its affordability, stability, biocompatibility and high quantum yield. A key draw back however is roughly only 5% of solar radiation incident on earth can provide the energy required …