Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

University of South Carolina

Biomass

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Heterogeneous Catalysis For The Upgrading Of Biomass Derived Chemicals Via Hydrodeoxygenation, Elizabeth Barrow Apr 2019

Heterogeneous Catalysis For The Upgrading Of Biomass Derived Chemicals Via Hydrodeoxygenation, Elizabeth Barrow

Theses and Dissertations

An important step in the upgrading of biomass derived chemicals is the removal of excess oxygen. The works reported here are focused on studying the heterogeneous catalysts that can be utilized for that upgrading through hydrodeoxygenation. This work begins with a discussion of the alkylation of short chain platform chemicals for chain growth and also demonstrates the proof of concept of combining alkylation and hydrodeoxygenation in a single step. Then, because of the promising nature of ReOx- Pd/CeO2 for selective hydrodeoxygenation, a detailed study of ReOx/CeO2 is presented. Finally, a new surface structure interpretation is presented for P/Ni(111) which could …


Rational Synthesis To Optimize Ruthenium-Based Biomass Conversion Catalysts, Shuo Cao Jan 2016

Rational Synthesis To Optimize Ruthenium-Based Biomass Conversion Catalysts, Shuo Cao

Theses and Dissertations

With worldwide petroleum resources dwindling and greenhouse gas emissions rising, it is urgent to find renewable replacements for petroleum-derived products. A biomass-derived chemical with high potential as a platform intermediate, γ-valerolactone (GVL) can be readily synthesized by hydrogenation of levulinic acid (LA), itself a common biomass intermediate, using supported Ru catalysts. Overall, vapor phase hydrogenation is more energy sensitive as the higher boiling point of LA (~245°C) and requires a high energy input, comparable to liquid phase hydrogenation, which is more economical. To date the literature on many novel biomass conversion processes such as the hydrogenation of LA to GVL …


Theoretical Investigation Of The Catalytic, Liquid-Phase Hydrodeoxygenation Of Organic Acids And Esters, Sina Behtash Dec 2014

Theoretical Investigation Of The Catalytic, Liquid-Phase Hydrodeoxygenation Of Organic Acids And Esters, Sina Behtash

Theses and Dissertations

With worldwide fossil fuel resources dwindling and greenhouse gas emissions rising, it is urgent to find renewable liquid fuel alternatives from e.g. biomass to meet the world’s growing energy demand. Lipid feedstocks and pyrolysis oils from woody biomass can be utilized for the production of second-generation biofuels via a catalytic hydrodeoxygenation (HDO) process. The conversion of fatty acids and esters plays an important role in the activity and selectivity of these processes. Understanding the HDO reaction mechanism of organic acids and esters on metal surfaces is a prerequisite for the rational design of new HDO catalysts specifically designed for upgrading …


Theoretical Investigation Of Heterogeneous Catalysis At The Solid–Liquid Interface For The Conversion Of Lignocellulosic Biomass Model Molecules, Muhammad Faheem Aug 2014

Theoretical Investigation Of Heterogeneous Catalysis At The Solid–Liquid Interface For The Conversion Of Lignocellulosic Biomass Model Molecules, Muhammad Faheem

Theses and Dissertations

Catalytic conversion of biomass-derived oxygenates to fuels and value-added chemicals is a promising strategy in the search for renewable and sustainable energy sources. Most relevant catalytic processes are carried out in an aqueous environment using supported transition metal catalysts. The reaction network consists of multiple series and parallel pathways leading to formation of hydrogen, alkanes, and lighter oxygenates. The final product distribution ultimately depends on the sequence and competition of C−C, C−O, C−H, and O−H bonds scissions. Ethylene glycol (EG) is the simplest model molecule of various biomass-derived polyols that has a C:O stoichiometry of 1:1 and contains all relevant …


Gas-Phase, Catalytic Hydrodeoxygenation Of Propanoic Acid Over Supported Group Viii Noble Metals, Yuliana K. Lugo José Aug 2014

Gas-Phase, Catalytic Hydrodeoxygenation Of Propanoic Acid Over Supported Group Viii Noble Metals, Yuliana K. Lugo José

Theses and Dissertations

Recent advances for the deoxygenation of biomass, have demonstrated that hydrodeoxygenation (HDO) is one of the most promising route for the upgrading pyrolysis bio-oils. Catalytic hydrodeoxygenation of pyrolysis bio-oil have shown to be an efficient and economical process, since the raw materials consist mainly of waste. Propanoic Acid (PAc) is considered as one of the main constituents of pyrolysis bio-oils. However, these carboxylic acids are extremely corrosive and difficult to deoxygenate. Therefore, much effort have been given to the development of novel catalytic techniques, to improve the activity, stability and selectivity for the HDO of carboxylic acids.

This dissertation explores …