Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

University of Louisville

Theses/Dissertations

2021

Molecular dynamics

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Aggregation Dynamics Of Bulk Nanoparticle Haloing Systems And The Influence Of Non-Ambient Temperatures., Marzieh Moradi Aug 2021

Aggregation Dynamics Of Bulk Nanoparticle Haloing Systems And The Influence Of Non-Ambient Temperatures., Marzieh Moradi

Electronic Theses and Dissertations

One of the methods of assembling colloids into 3D crystal structures is through the use of nanoparticle haloing. Nanoparticle haloing is a stabilization mechanism in binary particle suspensions possessing both a size and charge asymmetry, with which the nanoparticles aid in the bulk suspension’s stability. By altering the volume fractions of nanoparticles, it is possible to control the effective repulsion between the microparticles. Understanding the colloidal interactions and aggregate crystallinity as a function of nanoparticle concentration, temperature, and time are key challenges in developing future materials and designing crystalized 3D colloidal systems. In this study, we investigated the effect of …


Mapping Three Dimensional Interactions Between Biomolecules And Electric Fields., Joseph Patrick Brian P.E. May 2021

Mapping Three Dimensional Interactions Between Biomolecules And Electric Fields., Joseph Patrick Brian P.E.

Electronic Theses and Dissertations

Electroporation is a technique that induces the formation of open pores in cell membranes by the application of an electric field. Electroporation is widely practiced in research and clinical work for transfection of genetic sequences and drug molecule transport through the membrane barrier. However, a full theoretical explanation of the molecular mechanisms and thermodynamics responsible for pore formation, structure, and longevity does not yet exist. Advances in molecular dynamics simulations have enabled theoretical studies of electroporation with previously unobtainable fidelity spanning biologically relevant timescales. All-atom simulations utilizing the recently developed method of computational electrophysiology demonstrate that pore size correlates to …