Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Missouri University of Science and Technology

Electrodes

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Review Of Dielectric Barrier Discharge Cold Atmospheric Plasma For Surface Sterilization And Decontamination, Kolawole Adesina, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Frank Han Jan 2024

A Review Of Dielectric Barrier Discharge Cold Atmospheric Plasma For Surface Sterilization And Decontamination, Kolawole Adesina, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Frank Han

Biological Sciences Faculty Research & Creative Works

Numerous investigations have shown that non-equilibrium discharges at atmospheric pressure, also known as "cold atmospheric plasma" (CAP) are efficient to remove biological contaminants from surfaces of a variety of materials. Recently, CAP has quickly advanced as a technique for microbial cleaning, wound healing, and cancer therapy due to the chemical and biologically active radicals it produces, known collectively as reactive oxygen and nitrogen species (RONS). This article reviews studies pertaining to one of the atmospheric plasma sources known as Dielectric Barrier Discharge (DBD) which has been widely used to treat materials with microbes for sterilization, disinfection, and decontamination purposes. To …


Ultrathin Conductive Ceo₂ Coating For Significant Improvement In Electrochemical Performance Of Limn₁.₅Ni₀.₅O₄ Cathode Materials, Rajankumar L. Patel, Sai Abhishek Palaparty, Xinhua Liang Jan 2017

Ultrathin Conductive Ceo₂ Coating For Significant Improvement In Electrochemical Performance Of Limn₁.₅Ni₀.₅O₄ Cathode Materials, Rajankumar L. Patel, Sai Abhishek Palaparty, Xinhua Liang

Chemical and Biochemical Engineering Faculty Research & Creative Works

LiMn1.5Ni0.5O4 (LMNO) has a huge potential for use as a cathode material in electric vehicular applications. However, it could face discharge capacity degradation with cycling at elevated temperatures due to attacks by hydrofluoric acid (HF) from the electrolyte, which could cause cationic dissolution. To overcome this barrier, we coated 3-5 micron sized LMNO particles with a ∼3 nm optimally thick and conductive CeO2 film prepared by atomic layer deposition (ALD). This provided optimal thickness for mass transfer resistance, species protection, and mitigation of cationic dissolution at elevated temperatures. After 1,000 cycles of chargedischarge between …