Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Brigham Young University

Theses/Dissertations

Biomass

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Characterization Of Pyrolysis Products From Fast Pyrolysis Of Live And Dead Vegetation, Mohammad Saeed Safdari Dec 2018

Characterization Of Pyrolysis Products From Fast Pyrolysis Of Live And Dead Vegetation, Mohammad Saeed Safdari

Theses and Dissertations

Wildland fire, which includes both planned (prescribed fire) and unplanned (wildfire) fires, is an important component of many ecosystems. Prescribed burning (controlled burning) is used as an effective tool in managing a variety of ecosystems in the United States to reduce accumulation of hazardous fuels, manage wildlife habitats, mimic natural fire occurrence, manage traditional native foods, and provide other ecological and societal benefits. During wildland fires, both live and dead (biomass) plants undergo a two-step thermal degradation process (pyrolysis and combustion) when exposed to high temperatures. Pyrolysis is the thermal decomposition of organic material, which does not require the presence …


Modeling Soot Formation Derived From Solid Fuels, Alexander Jon Josephson Nov 2018

Modeling Soot Formation Derived From Solid Fuels, Alexander Jon Josephson

Theses and Dissertations

Soot formation from complex solid fuels, such as coal or biomass, is an under-studied and little understood phenomena which has profound physical effects. Any time a solid fuel is combusted, from coal-burning power plants to wildland fires, soot formation within the flame can have a significant influence on combustion characteristics such as temperature, heat flux, and chemical profiles. If emitted from the flame, soot particles have long-last effects on human health and the environment. The work in this dissertation focuses on creating and implementing computational models to be used for predicting soot mechanisms in a combustion environment. Three models are …


Thermochemical Conversion Of Biomass: Detailed Gasification And Near-Burner Co-Firing Measurements, Jacob B. Beutler Oct 2018

Thermochemical Conversion Of Biomass: Detailed Gasification And Near-Burner Co-Firing Measurements, Jacob B. Beutler

Theses and Dissertations

An increasing emphasis on mitigating global climate change (global warming) over the last few decades has created interest in a broad range of sustainable or alternative energy systems to replace fossil fuel combustion. Biomass, when harvested responsibly, is a renewable fuel with many uses in replacing fossil fuels. Cofiring biomass with coal in traditional large-scale coal power plants represents one of the lowest risk, least costly, near-term methods of CO2 mitigation. Simultaneously, it is one of the most efficient and inexpensive uses of biomass. Alternatively, biomass can be transformed into useful products through gasification to produce clean syngas for …


Gasification Of Biomass, Coal, And Petroleum Coke At High Heating Rates And Elevated Pressure, Aaron D. Lewis Nov 2014

Gasification Of Biomass, Coal, And Petroleum Coke At High Heating Rates And Elevated Pressure, Aaron D. Lewis

Theses and Dissertations

Gasification is a process used to convert any carbonaceous species through heterogeneous reaction to obtain the desired gaseous products of H2 and CO which are used to make chemicals, liquid transportation fuels, and power. Both pyrolysis and heterogeneous gasification occur in commercial entrained-flow gasifiers at pressures from 4 to 65 atm with local gas temperatures as high as 2000 °C. Many gasification studies have been performed at moderate temperatures, heating rates, and pressures. In this work, both pyrolysis and char gasification experiments were performed on coal, petroleum coke, and biomass at conditions pertinent to commercial entrained-flow gasifiers. Rapid biomass pyrolysis …


Application Of One Dimensional Turbulence (Odt) To Model Fire Spread Through Biomass Fuel Bed, Abinash Paudel Jun 2013

Application Of One Dimensional Turbulence (Odt) To Model Fire Spread Through Biomass Fuel Bed, Abinash Paudel

Theses and Dissertations

Each year fires destroy millions of acres of woodland, lives, and property, and significantly contribute to air pollution. Increased knowledge of the physics and properties of the flame propagation is necessary to broaden the fundamental understanding and modeling capabilities of fires. Modeling flame propagation in fires is challenging because of the various modes of heat transfer with diverse fuels, multi-scale turbulence, and complex chemical kinetics. Standard physical models of turbulence like RANS and LES have been used to understand the flame behavior, but these models are limited by computational cost and their inability to resolve sub-grid scales. Application of several …


Mechanistic Investigation Of Ash Deposition In Pulverized-Coal And Biomass Combustion, Shrinivas Sadashiv Lokare Sep 2008

Mechanistic Investigation Of Ash Deposition In Pulverized-Coal And Biomass Combustion, Shrinivas Sadashiv Lokare

Theses and Dissertations

This investigation details the effects of fuel constituents on ash deposition through systematic experimental and theoretical analyses of fundamental particle experiments and a suite of fuels with widely varying inorganic contents and compositions. The experiments were carried out in the Multifuel Flow Reactor (MFR) at Brigham Young University. Fuels included several biomass fuels (straw, sawdust and mixtures of straw-sawdust with other additives such as Al(OH)3, CaCO3, etc.) and four commercially-used coals (Illinois#6, Powder River Basin – Caballo and Cordero, Blind Canyon, and Lignite – Beulah Zap). The data from the series of experiments quantitatively illustrate the effects of fuel properties, …


Experimental And Modeling Investigations Of Biomass Particle Combustion, Hong Lu Aug 2006

Experimental And Modeling Investigations Of Biomass Particle Combustion, Hong Lu

Theses and Dissertations

This investigation provides a comprehensive analysis of entrained-flow biomass combustion processes. Experimental and theoretical investigations indicate how particle shape and size influence biomass combustion rates. Experimental samples include flake-like, cylinder-like, and equant (nearly spherical) shapes with similar particle masses and volumes but different surface areas. Samples of small (less than 500 µm) particles were passed through a laboratory entrained-flow reactor in a nitrogen/air atmosphere and a maximum reactor wall temperature of 1600 K, while large samples were reacted in suspension in a single particle furnace operated at similar conditions as the entrained-flow reactor. A separately developed computer and image analysis …


Fuel-Nox Formation During Low-Grade Fuel Combustion In A Swirling-Flow Burner, Chunyang Wu Jan 2006

Fuel-Nox Formation During Low-Grade Fuel Combustion In A Swirling-Flow Burner, Chunyang Wu

Theses and Dissertations

Insufficient knowledge of fireside behavior in the near-burner region during biomass combustion is one of major factors preventing widespread use of this renewable fuel in pulverized coal power plants. The current research is aimed to investigate the impact of biomass cofiring on NO formation in the near-burner region through interpretation of computational fluid dynamics (CFD) predictions and data collected from a series of biomass tests in a pilot-scale (0.2 MW), swirling flow burner. Two-dimensional gas species mole fraction data were collected with state-of-theart instruments from nine experiments, composing one herbaceous biomass (straw), one woody biomass (sawdust), a low sulfur sub-bituminous …