Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Graphene

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Engineering

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr. Jan 2023

Synthesis Of Quasi-Freestanding Graphene Films Using Radical Species Formed In Cold Plasmas, Michael A. Mathews Jr.

Graduate Theses, Dissertations, and Problem Reports

For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer.

The PAS process reproducibly yielded two- to three-layer thick graphene films …


Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards Nov 2022

Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards

Electronic Thesis and Dissertation Repository

Current membrane separation processes are limited in high production and high purity settings due to a trade-off between selectivity and permeance. Methods of creating nanoscale geometries in 2D materials are emerging and present an opportunity for fast, size selective mass transport that can be tailored to a wide array of applications. This thesis develops a method for quantifying flow through small pores in plane walls based on the behaviour of a solute dispersed in a downstream reservoir. This method is validated for a range of micropore diameters, for which flow rates can be calculated with confidence, and is shown to …


Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier Feb 2022

Mass Advection–Diffusion In Creeping Flow Through An Orifice Plate: A Model For Nanoporous Atomically Thin Membranes, Harpreet Atwal, Anika Wong, Michael Boutilier

Chemical and Biochemical Engineering Publications

Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Microwave-Assisted Synthesis Of Graphene Supported Hexagonal Magnetite For Applications In Catalysis, Hany A. Elazab, M. A. Radwan, M. A. Sadek Oct 2019

Microwave-Assisted Synthesis Of Graphene Supported Hexagonal Magnetite For Applications In Catalysis, Hany A. Elazab, M. A. Radwan, M. A. Sadek

Chemical Engineering

Herein, we report a rapid one-step synthetic method using microwave irradiation for growing magnetite nanocrystals on reduced graphene oxide sheets. This developed strategy allows decorating graphene sheets with magnetite nanocrystals of well-defined morphology as cubes using microwave-driven reduction of iron chloride using hydrazine hydrate as a reducing agent. The size and shape control was achieved via fine-tuning of the reaction conditions. The obtained results demonstrate the applicability of this microwave synthetic approach to control the morphology of the magnetite nanocrystals anchored on graphene sheets. Moreover, graphene sheets will enhance the nucleation and growth of magnetite nanoplates anchored on graphene. This …


Pd Nanoparticles Supported On Copper Oxide Prepared Via Microwave – Assisted Synthesis: An Efficient Catalyst For Suzuki Cross-Coupling, Hany A. Elazab Dr Sep 2019

Pd Nanoparticles Supported On Copper Oxide Prepared Via Microwave – Assisted Synthesis: An Efficient Catalyst For Suzuki Cross-Coupling, Hany A. Elazab Dr

Chemical Engineering

We report here a scientific investigation of a simple and versatile synthetic rote for the synthesis of palladium nanoparticles decorated with copper oxideand supported on reduced Graphene oxide (rGO) as a highly active catalyst usedfor Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (7000) and turnover frequency of 85000 h-1. Pd-CuO nanoparticles supported on reduced Graphene oxide nanosheets (Pd-CuO/rGO) exhibited an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction …


Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nano-Particles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab Dr Sep 2019

Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nano-Particles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab Dr

Chemical Engineering

The present communication reports a scientific investigation of a simple and versatile synthetic route for the synthesis of palladium nanoparticles decorated with copper oxide and supported on reduced graphene oxide (rGO). They are used as a highly active catalyst of Suzuki, Heck, and Sonogashira cross coupling reactions with a remarkable turnover number of 7000 and a turnover frequency of 85000 h-1. The Pd-CuO nanoparticles supported on reduced graphene oxide nanosheets (Pd-CuO/rGO) exhibit an outstanding performance through a high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method is used to prepare this efficient catalyst using microwave irradiation …


Thermal Characterization Of Graphene/Polyethylene Nanocomposites, Ahmed Z. A. Abuibaid Jun 2019

Thermal Characterization Of Graphene/Polyethylene Nanocomposites, Ahmed Z. A. Abuibaid

Chemical and Petroleum Engineering Theses

Practically, almost all polymers are solidified from the melts for product-forming purposes. Therefore, the evolution of solid structure (crystallization behavior) from their molten form has prime importance in manufacturing high performance materials. Polyethylene (PE) is one of the most commonly used semi crystalline polymers all over the world. In this thesis, nanocomposites of PE with thermal reduced graphene (TRG) (PE/TRG) were prepared via solvent blending and the crystallization of PE has been investigated using a differential scanning calorimeter (DSC). The nanocomposites were crystallized from the melts under both isothermal and dynamic conditions, and evolution of crystal formation is studied using …


Evaluating The Scalability Of The Sonication Method Of Graphene Oxide Synthesis, Evan Dexter May 2019

Evaluating The Scalability Of The Sonication Method Of Graphene Oxide Synthesis, Evan Dexter

Honors Program Projects

Graphene is a new material that was first isolated in 2004, and consists of one to a few atomic layers of carbon in a lattice sheet structure. Graphene has high tensile strength, high surface area, very low electrical resistance, and various other special properties that make it an excellent material for use in emerging technologies in the categories of electrical components, energy systems, and high strength applications. The production scale of graphene sheets and its variations is currently limited to laboratory use, with increasing research being conducted toward the development of manufacturing techniques of the material. We conducted experiments to …


Hydrothermal Synthesis Of Graphene Supported Pd/Fe3o4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab Dr Apr 2019

Hydrothermal Synthesis Of Graphene Supported Pd/Fe3o4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab Dr

Chemical Engineering

This research reports a reproducible, reliable, and efficient method for preparing palladium nanoparticles dispersed on a composite of Fe3O4 and graphene as an active catalyst with high efficiency for being used in Suzuki cross – coupling reactions. Graphene supported Pd/Fe3O4 nanoparticles (Pd/Fe3O4/G) exhibit a remarkable catalytic performance towards Suzuki coupling reactions. Moreover, the prepared catalyst recyclability was up to nine times without losing its high catalytic activity. The catalyst was prepared using hydrothermal synthesis; the prepared catalyst is magnetic in order to facilitate catalyst separation out of the reaction medium after reaction completion simply through using a strong magnet. This …


Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn Jan 2019

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn

Theses and Dissertations--Chemical and Materials Engineering

Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes.

In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature. …


Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles As An Efficient Nanocomposite For Catalysis Applications In Cross-Coupling Reactions, Hany A. Elazab, Tamer T. El-Idreesy Jan 2019

Polyvinylpyrrolidone - Reduced Graphene Oxide - Pd Nanoparticles As An Efficient Nanocomposite For Catalysis Applications In Cross-Coupling Reactions, Hany A. Elazab, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

This paper reported a scientific approach adopting microwave-assisted synthesis as a synthetic route for preparing highly active palladium nanoparticles stabilized by polyvinylpyrrolidone (Pd/PVP) and supported on reduced Graphene oxide (rGO) as a highly active catalyst used for Suzuki, Heck, and Sonogashira cross coupling reactions with remarkable turnover number (6500) and turnover frequency of 78000 h-1. Pd/PVP nanoparticles supported on reduced Graphene oxide nanosheets (Pd-PVP/rGO) showed an outstanding performance through high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method was used to prepare this efficient catalyst using microwave irradiation synthetic conditions. The synthesis approach requires simultaneous reduction …


Hydrothermal Synthesis Of Graphene Supported Pd/Fe 3 O 4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab, Mamdouh A. Gadalla, Mohamed A. Sadek, Tamer T. El-Idreesy Jan 2019

Hydrothermal Synthesis Of Graphene Supported Pd/Fe 3 O 4 Nanoparticles As Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab, Mamdouh A. Gadalla, Mohamed A. Sadek, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

This research reports a reproducible, reliable, and efficient method for preparing palladium nanoparticles dispersed on a composite of Fe3O4 and graphene as an active catalyst with high efficiency for being used in Suzuki cross – coupling reactions. Graphene supported Pd/Fe3O4 nanoparticles (Pd/Fe3O4 /G) exhibit a remarkable catalytic performance towards Suzuki coupling reactions. Moreover, the prepared catalyst recyclability was up to nine times without losing its high catalytic activity. The catalyst was prepared using hydrothermal synthesis; the prepared catalyst is magnetic in order to facilitate catalyst separation out of the reaction medium …


Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nanoparticles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy Jan 2019

Facile Synthesis Of Reduced Graphene Oxide-Supported Pd/Cuo Nanoparticles As An Efficient Catalyst For Cross-Coupling Reactions, Hany A. Elazab, M. A. Sadek, Tamer T. El-Idreesy

Chemical and Biochemical Engineering Faculty Research & Creative Works

The present communication reports a scientific investigation of a simple and versatile synthetic route for the synthesis of palladium nanoparticles decorated with copper oxide and supported on reduced graphene oxide (rGO). They are used as a highly active catalyst of Suzuki, Heck, and Sonogashira cross coupling reactions with a remarkable turnover number of 7000 and a turnover frequency of 85000 h-1. The Pd-CuO nanoparticles supported on reduced graphene oxide nanosheets (Pd-CuO/rGO) exhibit an outstanding performance through a high catalytic activity towards cross coupling reactions. A simple, reproducible, and reliable method is used to prepare this efficient catalyst using microwave irradiation …


Laser Vaporization And Controlled Condensation (Lvcc) Of Graphene Supported Pd/Fe3o4 Nanoparticles As An Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab Jun 2018

Laser Vaporization And Controlled Condensation (Lvcc) Of Graphene Supported Pd/Fe3o4 Nanoparticles As An Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

Herein, a reproducible, reliable, and efficient method was reported for the synthesis of palladium nanoparticles dispersed on a composite of Fe3O4 and graphene (Pd-Fe3O4/G) as a highly efficient active catalyst for being used in Suzuki cross–coupling reactions. Graphene supported Pd/Fe3O4 nanoparticles (Pd-Fe3O4/G) exhibit a remarkable catalytic performance towards Suzuki coupling reactions. Moreover, the prepared catalyst could be recycled for up to three times with high catalytic activity. The catalyst was prepared using LVCC synthesis; the prepared catalyst is highly magnetic which provides a platform to facilitate …


Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers May 2018

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even …


Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi Nov 2017

Computational Studies Of Structure–Function Relationships Of Supported And Unsupported Metal Nanoclusters, Hongbo Shi

Doctoral Dissertations

Fuel cells have been demonstrated to be promising power generation devices to address the current global energy and environmental challenges. One of the many barriers to commercialization is the cost of precious catalysts needed to achieve sufficient power output. Platinum-based materials play an important role as electrocatalysts in energy conversion technologies. In order to improve catalytic efficiency and facilitate rational design and development of new catalysts, structure–function relationships that underpin catalytic activity must be understood at a fundamental level. First, we present a systematic analysis of CO adsorption on Pt nanoclusters in the 0.2-1.5 nm size range with the aim …


Interactions At The Aqueous Interface Of Large-Area Graphene: Colloidal-Scale And Protein Adsorption, Aaron Chen Nov 2017

Interactions At The Aqueous Interface Of Large-Area Graphene: Colloidal-Scale And Protein Adsorption, Aaron Chen

Doctoral Dissertations

This thesis addresses the interactive interfacial character of large-area supported graphene in an aqueous environment near neutral pH. Studies of molecular bio-interactions with proteins and colloidal interactions with microparticles probe the role of hydrophobicity, van der Waals, and electrostatic contributions with varied ionic strength. The respective roles of the silica support and the graphene itself are identified. Results are benchmarked against other systems directly in experiments, and against published behavior with other materials, especially self-assembled monolayers. The adhesive and adsorption behavior of supported graphene is also put into context by calculations of surface and interaction potentials. Interest in graphene is …


Fabrication And Characterization Of Hybrid Nanocomposites By Matrix Assisted Pulsed Laser Evaporation, Songlin Yang Aug 2017

Fabrication And Characterization Of Hybrid Nanocomposites By Matrix Assisted Pulsed Laser Evaporation, Songlin Yang

Electronic Thesis and Dissertation Repository

Different methods have been applied to deposit hybrid nanocomposites which can be applied in various fields due to their light weight and multifunctional properties. Here, matrix assisted pulsed laser evaporation (MAPLE) equipment with 532 nm Nd:YAG laser is applied to fabricate three types of hybrid nanocomposites on different substrates.

Chemical synthesized FeCo nanoparticles were deposited on graphene sheets by MAPLE technique (laser fluence: 300 mJ/cm2). The effects of deposition time (t) on particle amount, shape and size have been investigated. Yttrium barium copper oxide (YBCO) materials are one type of high-temperature superconductive materials and …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Drawing And Twisting Of Graphene Fibers, Gregory T. Lane, Robert J. Sekerak, Isaias Diaz Jun 2017

Drawing And Twisting Of Graphene Fibers, Gregory T. Lane, Robert J. Sekerak, Isaias Diaz

Mechanical Engineering

The aim of this project was to develop a more automated process for drawing and twisting of graphene fibers than was currently in place. This was implemented by having two chemical baths with variable speed rollers at either end, and intermediate roller to spool fiber between stages, and a twisting cylinder with integral spool to twist the fiber as it is collected. The goal was to have this first iteration deliver a working prototype, however due to manufacturing delays and timing constraints, that will be missed. A second follow-on project would be able to continue the work presented here and …


The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab, Sherif Moussa, Ali R. Siamaki, B. Frank Gupton, M. Samy El-Shall Jun 2017

The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab, Sherif Moussa, Ali R. Siamaki, B. Frank Gupton, M. Samy El-Shall

Chemical and Biochemical Engineering Faculty Research & Creative Works

Abstract: In this research, we report a scientific investigation of an efficient method used for the synthesis of highly active Palladium Nanoparticles decorated with Fe3O4, Co3O4, and Ni (OH)2 Supported on Graphene as Potential Efficient Catalysts for Suzuki Cross—Coupling. Pd/Fe3O4 nanoparticles supported on graphene nanosheets (Pd/Fe3O4/G) showed an excellent catalytic activity for Suzuki coupling reactions and recycled for up to four times without loss of catalytic activity. An efficient magnetic catalyst has been successfully synthesized using a simple, reproducible fast and reliable method using microwave …


The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab Dr Jan 2017

The Effect Of Graphene On Catalytic Performance Of Palladium Nanoparticles Decorated With Fe3o4, Co3o4, And Ni (Oh)2: Potential Efficient Catalysts Used For Suzuki Cross—Coupling, Hany A. Elazab Dr

Chemical Engineering

In this research, we report a scientific investigation of an efficient method used for the synthesis of highly active Palladium Nanoparticles decorated with Fe3O4, Co3O4, and Ni (OH)2 Supported on Graphene as Potential Efficient Catalysts for Suzuki Cross—Coupling. Pd/Fe3O4 nanoparticles supported on graphene nanosheets (Pd/ Fe3O4/G) showed an excellent catalytic activity for Suzuki coupling reactions and recycled for up to four times without loss of catalytic activity. An efficient magnetic catalyst has been successfully synthesized using a simple, reproducible fast and reliable method using microwave irradiation conditions. The prepared catalysts are magnetic as in case of iron and cobalt oxides …


Biphasic Cellulose Acetate/Rtil Membranes And Functionalized Graphene Adsorbents For Natural Gas Processing: Experimental And Molecular Simulation Studies, Amir Khakpay Jan 2017

Biphasic Cellulose Acetate/Rtil Membranes And Functionalized Graphene Adsorbents For Natural Gas Processing: Experimental And Molecular Simulation Studies, Amir Khakpay

Electronic Theses and Dissertations

In this dissertation, gas separation using membranes is investigated for natural gas upgrading. The main objectives of this study are separation of high value hydrocarbons such as propane (c3h8) from natural gas and carbon dioxide (co2) separation from light gases such as nitrogen (n2) and methane (ch4). To achieve these goals, supported ionic liquid membranes (silms), biphasic membranes, and nanoporous graphene (npg) and graphene oxide (npgo) membranes are studied. Biphasic membranes are proposed to overcome silms issues for gas separation. The major issues with silms are low room temperature ionic liquid (rtil) content and instability at high cross-membrane pressure. For …


Advanced Carbon Materials Based Electrodes For High Performance Symmetric Supercapacitors, Keliang Wang Jan 2017

Advanced Carbon Materials Based Electrodes For High Performance Symmetric Supercapacitors, Keliang Wang

Electronic Theses and Dissertations

Supercapacitors have received considerable attention due to their high energy density, long life time, rapid charge/discharge rate, and because they are environmental friendly technology. Electrode materials play a key role in the final performance of supercapacitors. Carbon, usually used as symmetric supercapacitors electrode materials, exhibit extraordinary stability in harsh electrolyte and electrochemical performance owing to its physical and chemical properties. In addition, porous structure originated from activation, excellent electrical conductivity, sustainability, wide availability and low cost further offering the improvement in electrochemical performance and make it to be a promising electrode material for symmetric supercapacitors. Considering the factors affected electrochemical …


Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang Aug 2016

Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang

McKelvey School of Engineering Theses & Dissertations

Environmental technologies, such as for water treatment, have advanced significantly due to the rapid expansion and application of nanoscale material science and engineering. In particular, two-dimensional graphene oxide (GO), has demonstrated considerable potential for advancing and even revolutionizing some of these technologies, such as engineered photocatalysts and membranes. To realize such potential, an industrially scalable process is needed to produce monomeric and aggregation-resistant GO nanostructures/composites, in addition to new knowledge of material properties, behavior, and performance within an environmental context.

Research presented in this thesis addresses both scientific and engineering gaps through the development of a simple, yet robust aerosol-based …


Large-Area Graphene-Based Nanofiltration Membranes By Shear Alignment Of Discotic Nematic Liquid Crystals Of Graphene Oxide, Abozar Akbari, Phillip Sheath, Samuel T. Martin, Dhanraj B. Shinde, Mahdokht Shaibani, Parama Chakraborty Banerjee, Rachel Tkacz, Dibakar Bhattacharyya, Mainak Majumder Mar 2016

Large-Area Graphene-Based Nanofiltration Membranes By Shear Alignment Of Discotic Nematic Liquid Crystals Of Graphene Oxide, Abozar Akbari, Phillip Sheath, Samuel T. Martin, Dhanraj B. Shinde, Mahdokht Shaibani, Parama Chakraborty Banerjee, Rachel Tkacz, Dibakar Bhattacharyya, Mainak Majumder

Chemical and Materials Engineering Faculty Publications

Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in < 5 s. Pressure driven transport data demonstrate high retention (> 90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30–40%) retention of …


Silk-Derived Graphene-Like Carbon With High Electrocatalytic Activity For Oxygen Reduction Reaction, Qingfa Wang, Ruoping Yanzhang, Yaqing Wu, Han Zhu, Junfeng Zhang, Mingliang Du, Ming Zhang, Li Wang, Xiangwen Zhang, Xinhua Liang Mar 2016

Silk-Derived Graphene-Like Carbon With High Electrocatalytic Activity For Oxygen Reduction Reaction, Qingfa Wang, Ruoping Yanzhang, Yaqing Wu, Han Zhu, Junfeng Zhang, Mingliang Du, Ming Zhang, Li Wang, Xiangwen Zhang, Xinhua Liang

Chemical and Biochemical Engineering Faculty Research & Creative Works

A facile method to prepare the nanoporous and graphene-like carbon material from a natural silk fiber was developed by a potassium intercalation and carbonization procedure. The as-synthesized graphene-like fiber was employed for oxygen reduction reaction and exhibited impressive electrocatalytic activity.


Electrochemical Syntheses Of Graphene And Its Composites, Bo Zhao, Li Jiang, Ming-Hui Yuen, Xian-Zhu Fu, Rong Sun, Ching-Ping Wong Feb 2016

Electrochemical Syntheses Of Graphene And Its Composites, Bo Zhao, Li Jiang, Ming-Hui Yuen, Xian-Zhu Fu, Rong Sun, Ching-Ping Wong

Journal of Electrochemistry

Graphene is a kind of ideal two-dimensional flat carbon nanomaterials which have unique chemical and physical properties. The attractive potential applications must be based on the high quality mass production of graphene. However, it remains a huge challenge.An electrochemical approach is a fast, environmental friendly and easy-operating method. single- or multi-layered graphene flakes can easily be produced in short periods of time. In this review, the structure, properties and preparation methods of graphene are first introduced. Accordingly, the electrochemical approaches used for the productions of graphene flakes,graphene/inorganic nanocomposites, graphene/polymer composites and graphene analogues are highlighted. Finally, challenges and opportunities are …


Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong Aug 2015

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much …