Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu Nov 2015

Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu

Faculty Publications

We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe > Co > Ni > Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited …


Modeling Lithium Intercalation In A Porous Carbon Electrode, Gerardine G. Botte, Ralph E. White Mar 2015

Modeling Lithium Intercalation In A Porous Carbon Electrode, Gerardine G. Botte, Ralph E. White

Ralph E. White

No abstract provided.


Estimation Of The Effect Of Catalyst Physical Characteristics On Fenton-Like Oxidation Efficiency Using Adaptive Neuro-Fuzzy Computing Technique Dec 2014

Estimation Of The Effect Of Catalyst Physical Characteristics On Fenton-Like Oxidation Efficiency Using Adaptive Neuro-Fuzzy Computing Technique

Faculty of Engineering University of Malaya

Catalyst size, which determines surface area, is one of the major factors in catalytic performance. In this study, response surface methodology (RSM) and an adaptive neuro-fuzzy inference system (ANFIS) were applied to quantify the effects of physical characteristics of magnetite on Fenton-like oxidation efficiency of methylene blue. For this purpose, two magnetite samples (M and N) were used and characterized by XRD, BET surface area, particle size analyzer and FE-SEM. Central composite design (CCD) was applied to design the experiments, develop regression models, optimize and evaluate the individual and interactive effects of five independent variables: H2O2 and catalyst concentrations, pH, …