Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Journal of Electrochemistry

Anode materials

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li Feb 2019

Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li

Journal of Electrochemistry

Delicately building the unique nanocomposite with the combination of hollow structure and reduced graphene oxide (rGO) is highly desirable and still remains a great challenge in the field of energy conversion and storage. In this work, Ni/Mn3O4/NiMn2O4 double-shelled hollow spheres coated by rGO (denoted as R-NMN) have been successfully synthetized via one-step rapid solvothermal treatment followed by subsequent annealing for the first time. Served as anodes for sodium ion batteries (SIBs), the R-NMN composite containing 25wt% rGO exhibits a high discharge capacity of 187.8 mAh·g-1 after 100 cycles at 50 mA·g-1 …


Synthesis And Electrochemical Properties Of Li3V2(Bo3)3/C Anode Materials For Lithium-Ion Batteries, You Wang, Yi-Wen Zeng, Xing Zhong, Xing Liu, Quan Tang Apr 2018

Synthesis And Electrochemical Properties Of Li3V2(Bo3)3/C Anode Materials For Lithium-Ion Batteries, You Wang, Yi-Wen Zeng, Xing Zhong, Xing Liu, Quan Tang

Journal of Electrochemistry

The Li3V2(BO3)3/C (LVB/C) composite materials were successfully synthesized in two steps:Firstly, a stoichiomertric mixture of Li2C2O4, V2O5, H3BO3, H2C2O4•H2O and ethanol was thoroughly ball-milled to get the precursors. Secondly, the precursors were post-calcinated to get the ultimate products. The calcination temperatures of 750 ℃, 800 ℃ and 850 ℃ were selected based on TG-DTA analyses. The crystal structures, surface morphologies and carbon contents of the samples calcinated at five conditions, …


Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong Aug 2015

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much …


Synthesis And Electrochemical Performance Of Si/C Composite Modified By Pani, Guang-Hui Zhang, Pei-Kang Shen, Ge Sang, Ren-Jin Xiong Apr 2013

Synthesis And Electrochemical Performance Of Si/C Composite Modified By Pani, Guang-Hui Zhang, Pei-Kang Shen, Ge Sang, Ren-Jin Xiong

Journal of Electrochemistry

Silicon/carbon (Si/C) composite materials were prepared through high-energy ball milling and high-temperature solid-phase method, and then coated with thin polyaniline (PAni) film by oxidation. The microstructure and component of the composites were characterized by SEM, XRD, IR, TG, and the electrochemical performance was investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The results showed that the surface of PAni/Si/G/C composite was coating with complete lamellar structure of PAni film. Its reversible capacity was 784 mAh.g-1and 690 mAh.g-1 could be maintained after 50th charge-discharge cycles.