Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang Oct 2016

High Temperature Oxidation Study Of Tantalum Carbide-Hafnium Carbide Solid Solutions Synthesized By Spark Plasma Sintering, Cheng Zhang

FIU Electronic Theses and Dissertations

Tantalum carbide (TaC) and hafnium carbide (HfC) possess extremely high melting points, around 3900 oC, which are the highest among the known materials. TaC and HfC exhibit superior oxidation resistance under oxygen deficient and rich environments, respectively. A versatile material can be expected by forming solid solutions of TaC and HfC. However, the synthesis of fully dense solid solution carbide is a challenge due to their intrinsic covalent bonding which makes sintering challenging.

The aim of the present work is to synthesize full dense TaC-HfC solid solutions by spark plasma sintering with five compositions: pure HfC, HfC-20 vol.% TaC …


Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf May 2016

Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf

FIU Electronic Theses and Dissertations

Ultra high temperature ceramics (UHTC) are candidate materials for high temperature applications such as leading edges for hypersonic flight vehicles, thermal protection systems for spacecraft, and rocket nozzle throat inserts due to their extremely high melting points. Tantalum and Niobium Carbide (TaC and NbC), with melting points of 3950°C and 3600°C, respectively, have high resistivity to chemical attack, making them ideal candidates for the harsh environments UHTCs are to be used in. The major setbacks to the implementation of UHTC materials for these applications are the difficulty in consolidating to full density as well as their low fracture toughness. In …