Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

2020

Chloro-organics Removal

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan Jan 2020

Bimetallic Nanoparticles Integrated Membranes For Groundwater Remediation: Synthesis, Characterization And Applications, Hongyi Wan

Theses and Dissertations--Chemical and Materials Engineering

The detoxification of chlorinated organics from groundwater, such as trichloroethylene (TCE), tetrachloroethylene (PCE), polychlorinated biphenyl (PCB) and carbon tetrachloride (CTC), is a challenging area. Reductive dechlorination has been investigated using iron and iron-based nanoparticles, such as bare Fe, sulfidized Fe (S-Fe) and palladized Fe (Pd-Fe). However, issues including particle agglomeration, difficulties in recycling and particle leaching have been reported to hinder the application and wide usage of these techniques. The integration of nanoparticles and membranes can address these issues because of the large surface area, stability, and the potential for versatile functionalities. In this study, commercial polyvinylidene difluoride (PVDF) microfiltration …


The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad Jan 2020

The Development Of Temperature And Ph Responsive Hydrogels And Membranes For Selective Sorption Of Perfluoroorganics And Nanoparticle Integrated Catalytic Degradation Of Pcb, Anthony Saad

Theses and Dissertations--Chemical and Materials Engineering

The functionalization and use of responsive and catalytic polymeric membranes and materials were explored for contaminant capture and degradation. While membranes have a wide variety of uses across multiple industries, the inclusion of materials that are temperature and pH responsive in the membrane pore domain yields a wide range of applications and possibilities for water treatment. Temperature and pH responsive polymers, as well as controlled nanostructured materials, were synthesized in membrane pores for advanced adsorption-desorption and catalytic treatment of emerging organic contaminants in water. In this study, supported by the NIEHS, poly-N-isopropylacrylamide (PNIPAm) was used as a model thermo-responsive polymer, …