Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker Dec 2020

The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker

Electronic Thesis and Dissertation Repository

Catalytic hydrodeoxygenation (HDO) is a process for upgrading crude bio-oil as it has a high oxygen content which causes several undesirable properties. Current methods for HDO use sulfided NiMo and CoMo or supported noble metal catalysts which hydrogenate aromatic rings, leading to less valuable products and increasing the hydrogen consumption. Using 10 wt. % MoO3 supported on ZrO2, TiO2, γ-Al2O3, SiO2 and CeO2, we investigated the atmospheric HDO of anisole, a model compound, at 350 °C. All catalysts achieved C – O bond cleavage, preserving the aromatic ring. In situ UV-Vis spectroscopy showed a peak corresponding to intervalence charge transfer …


Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning Dec 2020

Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning

Chemistry and Chemical Biology ETDs

Converting alkanes to other, more chemically and economically valuable molecules requires catalysts that can survive elevated temperatures and highly reducing environments. These environments can cause many metal-nanoparticle based catalysts to sinter rapidly, causing a loss of activity. They must also tolerate the coke formation, as well, since coke can restrict access to active sites by gas phase molecules, thus lowering catalytic activity. While there are routes to improve both the sinter and coke resistance of catalysts, an alternative strategy is to develop a protocol for regenerating the activity of the catalyst in question when coke formation or sintering becomes problematic. …


Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey Jul 2020

Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey

Doctoral Dissertations

The use of biomass-derived ligno-cellulose as a possible alternative source of fuels and chemicals to fossil-based hydrocarbons, however, biomass offers many challenges based on processing and its high oxygen content. One promising upgrading route is deoxydehydration, a reaction which combines a deoxygenation by a sacrificial reductant and dehydration in a single step to selectively convert vicinal diols into an olefin. This reaction is highly selective when using homogeneous oxo-rhenium catalysts, which can easily undergo the necessary changes in coordination and oxidation state, however the high cost of rhenium and difficulty of homogeneous catalyst recovery make these catalysts untenable for large …


Engineering Dopant Position In Structure-Controlled Ceo2-Zro2 Catalysts, Behnam Safavinia May 2020

Engineering Dopant Position In Structure-Controlled Ceo2-Zro2 Catalysts, Behnam Safavinia

LSU Master's Theses

CeO2-ZrO2 (CZO) nanoparticles (NPs) have application in many catalytic reactions, such as methane reformation, due to their oxygen cycling ability. Ni doping has been shown to improve the catalytic activity and acts as an active site for the decomposition of methane. In this work, Ni:CZO NPs were synthesized via a two-step co-precipitation/molten salt synthesis to compare Ni distribution, oxygen vacancy concentration, and catalytic activity relative to a reference state-of-the-art catalyst. To better understand the effects of Ni position and dispersion, and oxygen vacancy formation in these materials, the Ni concentration, reaction time, and deposition methods were varied. …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …