Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira Dec 2023

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira

Electronic Theses and Dissertations

Market trends show growing interest in cellulose nanomaterials due to their low environmental impact. However, current nanocellulose isolation technologies face technoeconomic and life cycle limitations. Previous research has shown that enzymatic treatments effectively reduce the energy input for mechanical nanocellulose isolation. Simultaneously, there is potential to improve the viability of cellulosic ethanol facilities by coproducing nanocelluloses as high-value product obtained from agricultural feedstock. Here, our goal was to study the mass balance of enzymatic-mechanical processes that coproduces cellulosic sugars and nanocelluloses, evaluating the technical feasibility of converting lignified and non-lignified materials.

First, we have determined a feasible 50:50 mass ratio …


Solid Acid Catalyzed Dehydration Reactions Of Biomass-Derived Alcohols, Mackenzie Todd May 2023

Solid Acid Catalyzed Dehydration Reactions Of Biomass-Derived Alcohols, Mackenzie Todd

Electronic Theses and Dissertations

Concerns around climate change and the use of fossil resources contributing to increasing carbon dioxide concentrations in the atmosphere has motivated transitions to use biomass resources for the production of specialty chemicals and fuels, in hopes of creating a more cyclical use of carbon. The work presented here focuses on two different aspects of catalytic upgrading of biomass-derived platform molecules using heterogeneous acid catalysts. First, we use an interdisciplinary and iterative approach to process development for producing a diesel fuel additive from pyrolysis oils of woody biomass. We use fuel property calculations to define measures of success in chemical upgrading …


Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation., Saumya Gulati May 2023

Investigation Of Light Management Strategies And Photochemistry Of Si/Tio2 Tandem Microwire Slurries For Solar Hydrogen Generation., Saumya Gulati

Electronic Theses and Dissertations

The intermittent nature of the Sun makes it difficult to use it as a primary source of electricity and often needs to be supplemented by electricity from the grid which comes from fossil fuels. This motivates the need for solar energy storage. Photoelectrochemical (PEC) water-splitting has been explored as a means to convert solar energy into hydrogen (and oxygen), which can be stored as fuel. The current method of coupling PV and electrolyzer units has been widely commercialized, however, the cost of H2 generated is far from the target of $1/kg set by the DOE under the Energy EarthShot …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb Aug 2022

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene, …


Catalytic Ring Opening Of Mono- And Bicyclic Compounds For The Production Of Renewable Diesel And Jet Fuel, Matthew J. Kline May 2022

Catalytic Ring Opening Of Mono- And Bicyclic Compounds For The Production Of Renewable Diesel And Jet Fuel, Matthew J. Kline

Electronic Theses and Dissertations

Thermal DeOxygenation (TDO) is a process that converts organic acids produced from cellulose hydrolysis and dehydration into a low-oxygen bio-oil containing substituted naphthene compounds. The high aromatic content is desirable for gasoline fractions, but middle distillates such as diesel and jet fuel require upgrading via hydrogenation and ring opening to achieve better combustion characteristics. Previous research has demonstrated that TDO oil could be hydrogenated over high-surface-area nickel catalysts to improve the combustion characteristics, but the cetane number was still below the specifications.

Multiple supported catalysts were synthesized by ion exchange and incipient wetness impregnation, and the catalysts were characterized by …


Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain May 2022

Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain

Electronic Theses and Dissertations

My long-term goal is to develop catalytic systems to produce renewable energy for a sustainable society. The overall research objective of my dissertation is to advance understanding of Lewis acidic materials for (1) conversion of renewable lignin into phenolics and (2) enhanced cycling stability of lithium metal batteries to safely store renewable electricity from wind and solar, thereby laying the groundwork for our transition to a sustainable society. Petroleum is a conventional feedstock for current transportation fuels (gasoline, diesel, and jet fuels). However, petroleum is a finite resource and produces greenhouse gases (CO2 and CH4) upon processing, …


Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki May 2022

Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki

Electronic Theses and Dissertations

Perovskites are functional materials with the general formula ABO3 (A = alkali, alkaline earth or lanthanoid cations and B = transition metal or main group cations). These materials are marked by a variety of crystal structures and interesting properties such as colossal magnetoresistance, ferroelectricity, multiferroicity, superconductivity, pseudocapacitance, gas sensing, charge transport, and electrocatalytic properties. The formula of perovskite can be written as AA’BB’O6, when there is ordering between two cations over A and B-sites. Such compounds are called double perovskite oxides. Some amount of oxygen could be lost from crystal structure without decomposition of the phase. Such …


Development Of Porous Solid Acid Catalysts For Lignocellulose And Plastic Upcycling., Mohammad Shahinur Rahaman May 2022

Development Of Porous Solid Acid Catalysts For Lignocellulose And Plastic Upcycling., Mohammad Shahinur Rahaman

Electronic Theses and Dissertations

My goal is to develop chemical processes for transforming waste to solve environmental problems and enhance sustainability. Environmental problems such as pollution and massive amounts of waste are the main drivers that stimulate my research ideas. I focused on creating novel, efficient catalytic processes for converting polymeric waste "feedstocks" into high-value chemicals by integrating my expertise in catalysis, materials science, and synthetic chemistry to develop porous solid catalytic materials. During my Ph.D., I focused on two polymeric feedstocks, lignocellulose, and discarded plastic.

Early in my Ph.D. journey, I focused on catalytic upcycling of lignocellulose. Lignocellulosic biomass is cost-effective, abundant, and …


Techno-Economics And Life Cycle Analysis Of Upgrading Woody Biomass To Diesel Blendstock, Aysan Najd Mazhar Dec 2021

Techno-Economics And Life Cycle Analysis Of Upgrading Woody Biomass To Diesel Blendstock, Aysan Najd Mazhar

Electronic Theses and Dissertations

Woody biomass conversion to transportation fuels have been developed as alternatives to fossil fuel production to reduce greenhouse gas emissions and to increase energy security. Fast pyrolysis, a thermochemical technology, has the potential to offer high efficiencies to produce liquid transportation fuels from woody biomass. Fast pyrolysis involves rapid heating of biomass particles in the absence of air at approximately 500°C and results in non-condensable gases, bio-oil (pyrolysis oil), and char as products. The pyrolysis oil can be upgraded via integrated mild hydrogenation and etherification processes to a high energy density fuel that can be blended with diesel for transportation …


Solvent Engineering Of Molybdenum Disulfide Electrocatalyst For Hydrogen Evolution., Robert Carl Spalding Dec 2021

Solvent Engineering Of Molybdenum Disulfide Electrocatalyst For Hydrogen Evolution., Robert Carl Spalding

Electronic Theses and Dissertations

Energy is at an exponentially growing demand, and to keep up with these demands new technologies for renewable energy have received increased attention. Hydrogen plays a vital role in water electrolysis and fuel cells, as the hydrogen evolution reaction (HER) is the main step water splitting process. Most of the current electrocatalysts for HER are dominated by platinum and other precious metals due to their low over-potential and small Tafel slope, however, they are extremely costly. For this reason, cost-effective non-precious metal catalysts must be developed. Transition metal dichalcogenides, such as molybdenum disulfide (MoS2), are abundant and have recently shown …


Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts Aug 2021

Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts

Electronic Theses and Dissertations

The demand for energy is growing exponentially, and to keep up with these demands new technologies for renewable energy have received increased attention. Hydrogen is one of the most promising energy sources for the future and plays a vital role in water electrolysis and fuel cells, as the hydrogen evolution reaction (HER) is the main step in the water splitting process. To increase the reaction rate and improve efficiency for the water electrolysis, catalysts are used to minimize the overpotential.

Most of the current electrocatalysts for HER are heterogeneous in nature and are dominated by platinum and other precious metals …


Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


Reaction Kinetics And Mechanism Investigations Of Renewable Chemicals Production From Biomass, Hussein Talib Abdulrazzaq Dec 2020

Reaction Kinetics And Mechanism Investigations Of Renewable Chemicals Production From Biomass, Hussein Talib Abdulrazzaq

Electronic Theses and Dissertations

The development of the technologies and the improved processes for the production of high value bio-based chemicals is one of the most important challenges at the present time. This new movement is not only important from an environmental perspective, but also it is a profitable approach to provide affordable and efficient processes. Therefore, the chemical catalytic upgrading processes over various homogenous and heterogeneous catalysis could be an outstanding modification to upgrade biomass-derived platform molecule to high value applications. In this dissertation, we highlight our recent progress in developing new chemistries and processes for upgrading biomass-derived molecules and address the challenges …


Hydrogenation Of 2-Methylnaphthalene In A Trickle Bed Reactor Over Bifunctional Nickel Catalysts, Matthew J. Kline Dec 2020

Hydrogenation Of 2-Methylnaphthalene In A Trickle Bed Reactor Over Bifunctional Nickel Catalysts, Matthew J. Kline

Electronic Theses and Dissertations

Biomass thermal conversion processes, such as pyrolysis, tend to produce mixtures of mono- and poly-aromatic species. While the high aromatic content is desirable in gasoline fractions, middle-distillate cuts, particularly jet fuel and diesel, require upgrading via hydrogenation and ring opening to achieve better combustion characteristics. There have been many proposed methods for producing drop-in fuels from woody biomass, one of them being Thermal DeOxygenation (TDO). The TDO process converts organic acids from cellulose hydrolysis into a low-oxygen bio-oil containing large amounts of substituted naphthalene compounds.

Poly-aromatic molecules, such as those found in TDO oil, have low cetane numbers (CN), particularly …


A Kinetic And Thermodynamic Model Of Ethylene Dichloride Pyrolysis., Travis J Czechorski Nov 2019

A Kinetic And Thermodynamic Model Of Ethylene Dichloride Pyrolysis., Travis J Czechorski

Electronic Theses and Dissertations

Ethylene dichloride (EDC) is a precursor for the production of vinyl chloride (VCM) which is subsequently polymerized to form polyvinyl chloride (PVC). To convert EDC to VCM, EDC undergoes a pyrolysis process in the absence of oxygen at temperatures exceeding 500C. However, process yields are limited by the uncontrolled production of side-products that can degrade the quality of PVC and poison the reactor. Thus, tight process controls and costly separations guided by heuristics and plant operator experience are used to optimize EDC pyrolysis. To improve the process, I have programed a kinetic model of EDC pyrolysis based upon estimations of …


Nanowire Based Adsorbents/Catalysts For Co2 Capture And Utilization., Apolo Nambo May 2019

Nanowire Based Adsorbents/Catalysts For Co2 Capture And Utilization., Apolo Nambo

Electronic Theses and Dissertations

Even today, the major energy source is fossil fuels, which release CO2, a greenhouse gas that contributes to global warming. CO2 capture, storage (CCS) and/or utilization (CCU) technologies are two routes to mitigate this problem. Sorbents are being investigated in either temperature swing or pressure swing absorption approaches for carbon capture from flue gases. Solid sorbent based technology is a promising one but suffers from slow kinetics, low capacity and need for high temperatures. Thus, new sorbent materials that can have good CO2 sorption capacity, recyclability are sought. Similarly, one of the utilization approaches for CO …


Synthesis, Characterization, And Evaluation Of Metal Complexes With Cancer Selective Anti-Proliferative Effects And Hydrogen Evolution Catalytic Properties., Nicholas Vishnosky May 2019

Synthesis, Characterization, And Evaluation Of Metal Complexes With Cancer Selective Anti-Proliferative Effects And Hydrogen Evolution Catalytic Properties., Nicholas Vishnosky

Electronic Theses and Dissertations

Bis-thiosemicarbazones (BTSC) and their metal chelates have properties that are useful in several different scientific fields. These systems have already received attention in major fields of biology and engineering. Hydrogen evolution reaction (HER) catalysts need to be cheap and operate under minimal overpotentials with a long lifetime. The treatment of cancer requires, novel agents that have potent cytotoxic activity against cancer cells while displaying minimal side effects. In this dissertation the modular synthesis of these bis-thiosemicarbazone systems is utilized to regulate the redox chemistry for employment in the desired sector of chemistry. The ligand and metal chelates synthesized were characterized …


Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib Aug 2018

Mechanistic Studies Of Reducible Metal Oxides As Hydrodeoxygenation Catalysts, Akbar Mahdavi Shakib

Electronic Theses and Dissertations

Hydrodeoxygenation of phenol to benzene using ruthenium supported titania catalysts strongly varies depending on the support crystal structure and preparation conditions. Here, we performed spectroscopic characterization of titania supports to identify the surface impurities common to commercial and synthesized titania samples using a variety of spectroscopic methods. Sulfate impurities were detected for the commercial anatase samples and a procedure for their elimination was proposed so that inactive catalysts gained reactivity. Surface hydroxyls of different TiO2 samples (anatase, rutile, and pyrogenic) were identified using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments performed on vigorously cleaned surfaces and a facet-specific assignment …


Addition Of Exothermic Reaction Scale-Up Lab To Unit Operations Curriculum., Lisa A Anderson May 2018

Addition Of Exothermic Reaction Scale-Up Lab To Unit Operations Curriculum., Lisa A Anderson

Electronic Theses and Dissertations

According to the Chemical Safety Board’s 2002 report entitled "Improving Reactive Hazard Management,” the CSB identified 167 serious accidents involving uncontrolled chemical reactions in the United States between 1980 and 2001 causing 108 deaths and hundreds of millions of dollars in property damage. Of the 167 accidents, 35% involved runaway reactions. One noteworthy incident from recent history is the fatal explosion that occurred at T2 Laboratories in Jacksonville, FL as a result of improper scale-up and an insufficient cooling design for the system.

One recommendation resulting from the CSB investigation of the incident was that the Accreditation Board for Engineering …


Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee Dec 2017

Production Of Bio-Oil With Different Oxygen Content And Characterization Of Catalytic Upgrading To Transportation Fuel, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The world’s increasing population requires an increase in transportation fuel production. The lack of production of transportation fuels due to the shortage of fossil fuel resources combined with concerns about global emissions of carbon dioxide from fossil fuel combustion are the two major issues that have driven researchers to actively pursue alternative sources for oil production. Biomass is being considered as an alternative feedstock to produce fuel and chemicals due to its abundance and renewability. It has many features that make it suitable as a source of transportation fuel production. However, the bio-oil produced by the fast pyrolysis process has …


Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee Aug 2017

Characterization Of Catalysts For Hydrodeoxygenation Of Bio-Oils Using Phenol As A Model Compound, Abdulazeez Mohammed Khlewee

Electronic Theses and Dissertations

Due to the environmental considerations, depletion of fossil fuel reserves and fluctuating non-renewable fuel price, converting non-edible lignocellulosic biomass into renewable energy resources has gained significant importance. Phenol has been chosen as a model compound for catalytic screening because it is abundant in bio-oil composition and shows a high resistance to oxygen removal during hydrodeoxygenation (HDO) reactions. HDO of phenol produces chemicals that can be used as transportation fuels (Aromatics) or fuel additives. Theoretically, HDO of phenol has two distinct reduction pathways: direct deoxygenation (DDO) and hydrogenation (HYD). The previous results published by our group showed a precedent activity and …


Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen Aug 2017

Creating Renewable Tunable Polymers From Hydroxymethylfurfural, Meredith C. Allen

Electronic Theses and Dissertations

The research here deals with the conversion of 5-hydroxymethylfurfural (HMF) into a tunable polymer. HMF is a known derivative that can be acquired from biomass via hydrolysis of cellulose followed by isomerization and finally selective dehydration. The process considered here is being developed to create tunable polymers from HMF and involves several different steps, three of which are covered here. The first step, an etherification, is the reaction of HMF with an alcohol. This step is significant because in this step the R-group from the alcohol is added to HMF and the branching portion formed is carried over to the …


The Rate Of Fluid Absorption In Porous Media, Ran Wei Rioux May 2003

The Rate Of Fluid Absorption In Porous Media, Ran Wei Rioux

Electronic Theses and Dissertations

Fluid flow in porous media is an important process for many applications such as oil recovery, packed bed absorption colun~ns and filtration. Short time fluid uptake is important for processes such as textile sizing, paper coating and printing. But more work is needed to characterize the parameters that determine the absorption rate. This work is focused on short time absorption rate on uncoated and coated paper. Absorption rate is measured with a Bristow Wheel device for seven different uncoated papers and eleven coated papers. Gloss dynamics of freshly printed samples and tack dynamics are measured with two novel devices. Various …