Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Cu-Based Electrocatalysts For Carbon Dioxide Conversion To Value-Added Chemicals, Qingyang Li Jan 2020

Cu-Based Electrocatalysts For Carbon Dioxide Conversion To Value-Added Chemicals, Qingyang Li

Graduate Theses, Dissertations, and Problem Reports

Massive usage of fossil fuel has being causing considerable emission of CO2, which increases the temperature of the planet and greatly threaten human living environment, such as soil degradation, lower agricultural productivity, desertification, less biodiversity, fresh-water reduction, ocean acidification, ozone sphere destruction, etc. A number of technologies are being developed to reduce the CO2 amount, however, all existing technologies except utilizing CO2 as a feedstock, are hardly to essentially close the anthropogenic carbon loop. Currently, considering the economy and operability, electroreduction of CO2 seems to be the most promising strategy to convert CO2 to …


Review Of Established And Emergent Methods For The Production Of C4 Olefins, James Matthew Koval Jan 2020

Review Of Established And Emergent Methods For The Production Of C4 Olefins, James Matthew Koval

Graduate Theses, Dissertations, and Problem Reports

Current production of C4 olefins is dominated by naphtha cracking and butane dehydrogenation, but significant research interest is developing in alternate feedstocks due to an abundance of inexpensive natural gas and bioethanol. The current C4 olefin production methods are costly, make use of already-depleted petroleum resources, and are often hazardous to workers, which forms the impetus for investigation into alternative methods and assessment of their viability as a future means of olefin production. Methods of natural gas conversion to higher order hydrocarbons are discussed, including Fischer-Tropsch synthesis and oxidative methane coupling, each of which could form the first …


Process Development Of Shale Gas Assisted Lignin And Biomass Reforming Through Novel Reaction Pathway And Catalyst Design To Produce Hydrogen Rich Syngas For Fuels And Value Added Chemicals, Amoolya D. Lalsare Jan 2020

Process Development Of Shale Gas Assisted Lignin And Biomass Reforming Through Novel Reaction Pathway And Catalyst Design To Produce Hydrogen Rich Syngas For Fuels And Value Added Chemicals, Amoolya D. Lalsare

Graduate Theses, Dissertations, and Problem Reports

Novel biomass reforming strategy through synergistic co-processing with flare gas (methane and carbon dioxide) was developed at West Virginia University. Hardwood biomass comprised of lignin, hemicellulose, and cellulose is abundant in the US and potentially a sustainable source of hydrogen through extensive reforming and gasification. Ever-increasing shale gas production in the US occasionally leads to flaring owing to stranded production across the US. Achieving biomass co-processing with natural gas about to be flared in such stranded shale plays is the underlying motivation here. A novel reaction pathway was discovered wherein methane and carbon dioxide assisted reforming of biomass could be …


Process Modeling And Techno-Economic Analysis Of Thermo-Catalytic Dimethyl Ether Synthesis And Microwave-Based Aromatics Production Technologies From Shale Gas, Chirag Mevawala Jan 2020

Process Modeling And Techno-Economic Analysis Of Thermo-Catalytic Dimethyl Ether Synthesis And Microwave-Based Aromatics Production Technologies From Shale Gas, Chirag Mevawala

Graduate Theses, Dissertations, and Problem Reports

Production of dimethyl ether (DME) and direct non-oxidative methane dehydroaromatization (DHA) to aromatics via conventional and microwave (MW)-assisted processes are investigated in this research. Plant-wide models of the shale gas to DME process with integrated CO2 capture via direct and indirect synthesis routes have been developed. Optimal parameter estimation, and model validation are undertaken for various sections of the process including the pre-reforming reactor, auto-thermal reforming reactor, DME synthesis reactors, CO2 capture units and separation sections. A novel DME separation process has been developed for efficient separation of DME, syngas, and CO2. Plant-wide techno-economic optimization is …


Dynamic Study Of Mo/Zsm-5 Catalyst For Ch4 Dehydroadomation, Hadi Yahya Almusawa Jan 2020

Dynamic Study Of Mo/Zsm-5 Catalyst For Ch4 Dehydroadomation, Hadi Yahya Almusawa

Graduate Theses, Dissertations, and Problem Reports

Methane dehydroaromatization (CH4-MDA) is a highly promising venture for natural gas utilization/exploitation, i.e., direct conversion of methane (CH4) to liquid aromatics (benzene) and hydrogen. This process is a catalytic reaction and therefore, is subject to all the advantages and constraints of catalysis. This study discussed the structure and reactivity of Mo/ZSM-5 zeolite catalysts and their effect on the active conversion of methane to valuable aromatic products such as benzene: 1) The preparation and characterization of Mo/ZSM-5, which are crucial steps in any catalytic reaction process since a better performing catalyst consequently leads to better outcomes; 2) …