Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering

Dartmouth College

2015

Clostridium thermocellum

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd May 2015

Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd

Dartmouth Scholarship

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. …