Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

Mechanical & Aerospace Engineering Faculty Publications

Flow

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Viscoelastic Effects On Electrokinetic Particle Focusing In A Constricted Microchannel, Xinyu Lu, John Dubose, Sang Woo Joo, Shizhi Qian, Xiangchun Xuan Jan 2015

Viscoelastic Effects On Electrokinetic Particle Focusing In A Constricted Microchannel, Xinyu Lu, John Dubose, Sang Woo Joo, Shizhi Qian, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian …


Microfluidic Separation Of Live And Dead Yeast Cells Using Reservoir-Based Dielectrophoresis, Saurin Patel, Daniel Showers, Pallavi Vedantam, Tzuen-Rong Tzeng, Shizhi Qian, Xiangchun Xuan Jan 2012

Microfluidic Separation Of Live And Dead Yeast Cells Using Reservoir-Based Dielectrophoresis, Saurin Patel, Daniel Showers, Pallavi Vedantam, Tzuen-Rong Tzeng, Shizhi Qian, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening, etc. This work demonstrates a novel microfluidic approach to dielectrophoretic separation of yeast cells by viability. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeast cells and continuously separate them from live ones right inside the reservoir. This approach is therefore termed reservoir-based dielectrophoresis (rDEP). It has unique advantages as compared to existing dielectrophoretic approaches such as the occupation of zero channel space and …