Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang Aug 2019

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang

Arts & Sciences Electronic Theses and Dissertations

Multiple Sclerosis (MS) is an unpredictable, often disabling disease of the central nervous system (CNS) that disrupts the flow of information within the brain, and between the brain the body. MS is the most common progressive neurologic disease of young adults, affecting approximately 2.3 million people worldwide. It is estimated that more than 700,000 individuals are affected by MS in United States. While MS has been studied for decades, the cause of it is still not definite and a fully effective treatment for MS is not yet available.

Magnetic resonance imaging (MRI) has been used extensively in MS diagnosis and …


Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang Aug 2019

Quantitatively Studying Tissue Damage In Multiple Sclerosis Using Gradient Recalled Echo Mri Sequences, Biao Xiang

Arts & Sciences Electronic Theses and Dissertations

Multiple Sclerosis (MS) is an unpredictable, often disabling disease of the central nervous system (CNS) that disrupts the flow of information within the brain, and between the brain the body. MS is the most common progressive neurologic disease of young adults, affecting approximately 2.3 million people worldwide. It is estimated that more than 700,000 individuals are affected by MS in United States. While MS has been studied for decades, the cause of it is still not definite and a fully effective treatment for MS is not yet available. Magnetic resonance imaging (MRI) has been used extensively in MS diagnosis and …


Modeling Mechanisms Behind Force Generation By Actin Polymerization, Seyed Fowad Motahari May 2019

Modeling Mechanisms Behind Force Generation By Actin Polymerization, Seyed Fowad Motahari

Arts & Sciences Electronic Theses and Dissertations

Actin polymerization is the primary mechanism for overcoming the large turgor pressure that opposes endocytosis in yeast. While generation of pushing forces by actin polymerization is fairly well understood, it is not clear how actin polymerization produces pulling forces. In order to understand this process, it is necessary to simulate polymerization of filaments having various types of interactions with the membrane. Since existing methodologies in the literature do not treat such problems correctly, we develop a thermodynamically consistent methodology for treating polymerization of filaments having arbitrary interaction potentials with the membrane. Then I perform stochastic simulations for a system of …