Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Engineering

Wright State University

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Silk Hydrogels Incorporated With Melanin, Anne Lutz Jan 2021

Silk Hydrogels Incorporated With Melanin, Anne Lutz

Browse all Theses and Dissertations

Melanin is a naturally produced pigment found within the human body. Melanin is known for its ability to protect against Ultra Violet light, but also its ability to allow for mechanical protection. Making melanin a good addition to biomedical devices such as hydrogels. Silk hydrogels are weak in their load bearing capabilities but are known for their biocompatibility, biodegradability, and porosity. This makes the silk hydrogel a good material to incorporate melanin into in order to improve the mechanical properties. For the silk solution to form a solid, there must be a presence of both a catalyst and an oxidizer …


Chondroitin Sulfate Hydrogels For Total Wound Care Devices, Tushar Goswami Jan 2019

Chondroitin Sulfate Hydrogels For Total Wound Care Devices, Tushar Goswami

Browse all Theses and Dissertations

Chondroitin sulfate (CS) is a naturally occurring bio-polymer found in areas of high cartilage in mammals. In directed applications, such as hydrogels, CS can be used to impact keratinocyte growth cycles. In this work, CS based hydrogels were utilized to accelerate wound healing and, in conjunction with a graphene sensor, monitor wound fluid pH. The hydrogels were cast onto a graphene field effect transistor (GFET) to obtain the benefits of the hydrogel wound healing capabilities, while also utilizing the pH sensitivity of the graphene. Results showed that the hydrogel caused a fivefold increase in cell size over the course of …


Mechanical Stresses On Nasal Mucosa Using Nose-On-Chip Model, Zachary Edward Brooks Jan 2019

Mechanical Stresses On Nasal Mucosa Using Nose-On-Chip Model, Zachary Edward Brooks

Browse all Theses and Dissertations

The objective of this research was to design and fabricate a nose-on-chip device and bi-directional airflow system that models flow within the nasal cavity to investigate how airflow induced mechanical stresses impact nasal secretion rates and cytoskeletal remodeling. This research hypothesizes that the airflow induced shear stresses on the nasal mucosa will influence mucus production and the cytoskeleton of the cells. The RPMI 2650 cell line was used to model the nasal mucosa. The system was used to replicate the wall shear stresses (WSS) and wall shear forces (WSF) present in the anterior region of the nose. The WSS and …


Monitoring Cerebral Functional Response Using Scmos-Based High Density Near Infrared Spectroscopic Imaging, Dharminder Singh Langri Jan 2019

Monitoring Cerebral Functional Response Using Scmos-Based High Density Near Infrared Spectroscopic Imaging, Dharminder Singh Langri

Browse all Theses and Dissertations

Neurovascular coupling is an important concept that indicates the direct link between neuronal electrical firing with the vascular hemodynamic changes. Functional Near Infrared Spectroscopy (fNIRS) can measure changes in cerebral vascular parameters of oxy-hemoglobin and deoxyhemoglobin concentrations and thus can provide neuronal activity through neurovascular coupling. Currently many commercial fNIRS devices are available, but they are limited by the number of channels (usually having only 8 detectors), which can limit the sensitivity, contrast, and resolution of imaging. High-density imaging can improve sensitivity, contrast, and resolution by providing many measurements and averaging the signals originating from the target cerebral focus area …


Characterization Of In-Vivo Damage In Implantable Cardiac Devices And The Lead Residual Properties, Anmar Mahdi Salih Jan 2019

Characterization Of In-Vivo Damage In Implantable Cardiac Devices And The Lead Residual Properties, Anmar Mahdi Salih

Browse all Theses and Dissertations

Approximately, 92.1 million patients in the US suffer from cardiovascular diseases with an estimated healthcare cost of over $300 billion; out of which at least one million patients have Cardiac Implantable Electronics Devices (CIED). CIED represented by pacemakers, Implantable Cardioversion Defibrillator (ICD), and Cardiac Resynchronization Therapy (CRT) are exposed to in-vivo damage. These damages are complex and composed on multiple levels and present challenges while assessing their combined extent. Since 2004, more than one hundred recalls were reported for cardiac devices. ICD devices had the majority with 40.8% recalls, pacemaker recall percentage was 14.5%, CRT recall percentage was12.7%, leads recalls …


Recording Of Elevated Temperature Fatigue Crack Growth Data By Dcpd System, N. Ramachandran, N. Arakere, Tarun Goswami May 2011

Recording Of Elevated Temperature Fatigue Crack Growth Data By Dcpd System, N. Ramachandran, N. Arakere, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The growth of "long" fatigue cracks, in α-β titanium alloy forging, subjected to cyclic stresses, is studied in this paper. The fatigue crack growth rate (FCGR) data were recorded at room temperature, 350, 450, 550 and 650°F using the Direct Current Potential Difference (DCPD) technique. The DCPD method, used in this investigation, was found to record and correlate the potential difference in terms of crack growth rate (da/dN) and Mode I stress intensity factor range satisfactorily. Various factors related to error minimization and calibration equations for compact tension specimens have been elaborated. Also discussed were the means to enhance the …


Dwell Fatigue I : Damage Mechanisms, Tarun Goswami Jan 2000

Dwell Fatigue I : Damage Mechanisms, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The mechanisms controlling deformation and failure under high temperature creep-fatigue conditions of materials are examined in this paper. The materials studied are solder alloys, copper alloys, low alloy steels, stainless steels, titanium alloys, and Ni-based alloys. The deformation and failure mechanisms were different (fatigue, creep, oxidation and their interactions) depending upon test and material parameters employed. Deformation mechanisms, such as cavity formation, grain boundary damage, intergranular (IG) and transgranular (TG) damage, oxidation, internal damage, dislocation cell concentration, and oxide mechanisms are very important in order to gain more knowledge of fatigue behavior of materials. The observed mechanisms can be categorized …


Applicability Of Modified Diercks Equation With Nrim Data, Tarun Goswami Jan 1995

Applicability Of Modified Diercks Equation With Nrim Data, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The applicability of the modified Diercks equation (MDE) was assessed with elevated temperature low cycle fatigue (ETLCF) data generated by the National Research Institute for Metals (NRIM) for lCr-Mo-V, 1.25Cr-Mo, 2.25Cr-Mo and 9Cr-lMo steels respectively. The modified Diercks equation was assessed with data generated with symmetrical, slow-fast and hold-time waveforms for low alloy steels. The following characteristics were observed: Symmetrical waveforms: Five strain rates were used with these waveforms where predicted life was by a factor of ± x2 for 77%, 87%, 82% and 92% of data points for lCr-Mo-V, 1.25Cr-Mo, 2.25Cr-Mo and 9CrlMo steels respectively. Slow-fast waveforms: Diercks equation …