Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

An In Vitro Platform To Characterize Myocardial Wound Remodeling, Jonathan Heywood Dec 2023

An In Vitro Platform To Characterize Myocardial Wound Remodeling, Jonathan Heywood

All Dissertations

Heart Failure, sometimes called Congestive Heart Failure, is a collection of pathological disruptions in which the heart is unable to pump blood properly. It affects over 6 million people in the United States, with the cost-per-patient at approximately $30,000 and the total cost estimated to be $160 billion by 2030. There is no single cause of heart failure, as it can manifest as a varying array of diseases, disorders, and syndromes. However, many of these underlying diseases result specifically from dysregulation of mechanically active cells called cardiac fibroblasts, which play a critical role in the remodeling of the extracellular matrix …


Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee Aug 2023

Calculating The Difference In Stiffness Of Living T Cells Through Micropipette Aspiration, Minju Lee

McKelvey School of Engineering Theses & Dissertations

Cardiovascular disease (CVD) accounted for 17.9 million deaths in 2019, with fibrosis contributing to nearly a quarter of these fatalities [1,2]. Fibrosis, characterized by excessive connective tissue formation, has been strongly linked to T cells, essential components of the immune system. This study explores the mechanisms of T cell activation and the subsequent changes in biophysical properties like diameter, stiffness, and elasticity, aiming to develop therapeutic strategies for fibrosis-related diseases, including CVD. Utilizing the micropipette aspiration technique, we accurately assessed T cell stiffness and observed a change in bulk cell stiffness upon activation. The results demonstrated increased fluid-like behavior in …


Computational Models Of Extracellular Matrix Remodeling In Pulmonary Fibrosis, Dylan Tyler Casey Jan 2023

Computational Models Of Extracellular Matrix Remodeling In Pulmonary Fibrosis, Dylan Tyler Casey

Graduate College Dissertations and Theses

Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive and ultimately fatal interstitial lung disease of unknown etiology. Like most forms of fibrosis, it is thought to reflect an error in the homeostatic wound healing process, leading to excess scar tissue that impairs lung function. With few effective treatments, uncovering the pathogenesis of IPF may provide crucial information for improving outcomes. However, its elusive origin makes research with traditional methods in biology, such as cell and animal models, challenging. Here, we employ computational models to simulate the development of IPF and investigate mechanisms by which the disease begins and progresses.

IPF …