Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

2018

Department of Biomedical Engineering

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Investigative Study On Nitric Oxide Production In Human Dermal Fibroblast Cells Under Normal And High Glucose Conditions, Maria Paula Kwesiga, Emily Cook, Jennifer Hannon, Sarah Wayward, Caroline Gwaltney, Smitha Rao, Megan C. Frost Nov 2018

Investigative Study On Nitric Oxide Production In Human Dermal Fibroblast Cells Under Normal And High Glucose Conditions, Maria Paula Kwesiga, Emily Cook, Jennifer Hannon, Sarah Wayward, Caroline Gwaltney, Smitha Rao, Megan C. Frost

Michigan Tech Publications

Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time …


Synthesis And Characterization Of Controlled Nitric Oxide Release From S-Nitroso-N-Acetyl-D-Penicillamine Covalently Linked To Polyvinyl Chloride (Snap-Pvc), Sean Hopkins, Megan C. Frost Sep 2018

Synthesis And Characterization Of Controlled Nitric Oxide Release From S-Nitroso-N-Acetyl-D-Penicillamine Covalently Linked To Polyvinyl Chloride (Snap-Pvc), Sean Hopkins, Megan C. Frost

Michigan Tech Publications

Polyvinyl chloride (PVC) is one of the most widely used polymers in medicine but has very poor biocompatibility when in contact with tissue or blood. To increase biocompatibility, controlled release of nitric oxide (NO) can be utilized to mitigate and reduce the inflammatory response. A synthetic route is described where PVC is aminated to a specified degree and then further modified by covalently linking S-nitroso-N-acetyl-d-penicillamine (SNAP) groups to the free primary amine sites to create a nitric oxide releasing polymer (SNAP-PVC). Controllable release of NO from SNAP-PVC is described using photoinitiation from light emitting diodes (LEDs). Ion-mediated NO release is …


The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion Jun 2018

The Effect Of Nd On Mechanical Properties And Corrosion Performance Of Biodegradable Mg-5%Zn Alloy, Lilach Elkaiam, Orly Hakimi, Jeremy Goldman, Eli Aghion

Michigan Tech Publications

Mg based implants are limited by their poor strength, ductility, and corrosion performance in physiological environments, drawbacks further compounded by their premature loss of mechanical integrity and evolution of harmful hydrogen gas. Neodymium additions to magnesium have been shown to improve mechanical properties through precipitation and solid solution hardening. Therefore, the present study incorporated Nd additions (up to 3%) into a promising Mg-5%Zn-0.13%Y-0.35%Zr alloy to improve mechanical properties and corrosion resistance. The microstructure evaluation of a series of alloys was performed using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction analysis. The mechanical properties were examined in terms of …


Bioactive Polydimethylsiloxane Surface For Optimal Human Mesenchymal Stem Cell Sheet Culture, Zichen Qian, David Ross, Wenkai Jia, Qi Xing, Feng Zhao Jun 2018

Bioactive Polydimethylsiloxane Surface For Optimal Human Mesenchymal Stem Cell Sheet Culture, Zichen Qian, David Ross, Wenkai Jia, Qi Xing, Feng Zhao

Michigan Tech Publications

Human mesenchymal stem cell (hMSC) sheets hold great potential in engineering three-dimensional (3D) completely biological tissues for diverse applications. Conventional cell sheet culturing methods employing thermoresponsive surfaces are cost ineffective, and rely heavily on available facilities. In this study, a cost-effective method of layer-by-layer grafting was utilized for covalently binding a homogenous collagen I layer on a commonly used polydimethylsiloxane (PDMS) substrate surface in order to improve its cell adhesion as well as the uniformity of the resulting hMSC cell sheet. Results showed that a homogenous collagen I layer was obtained via this grafting method, which improved hMSC adhesion and …


Application Of Composite Hydrogels To Control Physical Properties In Tissue Engineering And Regenerative Medicine, Cassidy Sheffield, Kaylee Meyers, Emil Johnson, Rupak Rajachar May 2018

Application Of Composite Hydrogels To Control Physical Properties In Tissue Engineering And Regenerative Medicine, Cassidy Sheffield, Kaylee Meyers, Emil Johnson, Rupak Rajachar

Michigan Tech Publications

The development of biomaterials for the restoration of the normal tissue structure–function relationship in pathological conditions as well as acute and chronic injury is an area of intense investigation. More recently, the use of tailored or composite hydrogels for tissue engineering and regenerative medicine has sought to bridge the gap between natural tissues and applied biomaterials more clearly. By applying traditional concepts in engineering composites, these hydrogels represent hierarchical structured materials that translate more closely the key guiding principles required for improved recovery of tissue architecture and functional behavior, including physical, mass transport, and biological properties. For tissue-engineering scaffolds in …


Metabolism-Driven High-Throughput Cancer Identification With Glut5-Specific Molecular Probes, Srinivas Kannan, Vagarshak Begoyan, Joseph Fedie, Shuai Xia, Łukasz J. Weseliński, Marina Tanasova, Smitha Rao Apr 2018

Metabolism-Driven High-Throughput Cancer Identification With Glut5-Specific Molecular Probes, Srinivas Kannan, Vagarshak Begoyan, Joseph Fedie, Shuai Xia, Łukasz J. Weseliński, Marina Tanasova, Smitha Rao

Michigan Tech Publications

Point-of-care applications rely on biomedical sensors to enable rapid detection with high sensitivity and selectivity. Despite advances in sensor development, there are challenges in cancer diagnostics. Detection of biomarkers, cell receptors, circulating tumor cells, gene identification, and fluorescent tagging are time-consuming due to the sample preparation and response time involved. Here, we present a novel approach to target the enhanced metabolism in breast cancers for rapid detection using fluorescent imaging. Fluorescent analogs of fructose target the fructose-specific transporter GLUT5 in breast cancers and have limited to no response from normal cells. These analogs demonstrate a marked difference in adenocarcinoma and …


The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion Feb 2018

The Suitability Of Zn–1.3% Fe Alloy As A Biodegradable Implant Material, Alon Kafri, Shira Ovadia, Jeremy Goldman, Jaroslaw W. Drelich, Eli Aghion

Michigan Tech Publications

Efforts to develop metallic zinc for biodegradable implants have significantly advanced following an earlier focus on magnesium (Mg) and iron (Fe). Mg and Fe base alloys experience an accelerated corrosion rate and harmful corrosion products, respectively. The corrosion rate of pure Zn, however, may need to be modified from its reported ~20 µm/year penetration rate, depending upon the intended application. The present study aimed at evaluating the possibility of using Fe as a relatively cathodic biocompatible alloying element in zinc that can tune the implant degradation rate via microgalvanic effects. The selected Zn–1.3wt %Fe alloy composition produced by gravity casting …