Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Motion Analysis Of The Upper Extremities During Lofstrand Crutch-Assisted Gait In Children With Orthopaedic Disabilities, Brooke A. Slavens, Neha Bhagchandani, Mei Wang, Peter A. Smith, Gerald F. Harris Oct 2011

Motion Analysis Of The Upper Extremities During Lofstrand Crutch-Assisted Gait In Children With Orthopaedic Disabilities, Brooke A. Slavens, Neha Bhagchandani, Mei Wang, Peter A. Smith, Gerald F. Harris

Biomedical Engineering Faculty Research and Publications

Background

This paper presents a review of current state-of-the-art dynamic systems for quantifying the kinematics and kinetics of the joints of the upper extremities during Lofstrand crutch-assisted gait. The reviewed systems focus on the rehabilitation of children and adults with myelomeningocele (MM), cerebral palsy (CP), spinal cord injury (SCI), and osteogenesis imperfecta (OI). Forearm crutch systems have evolved from models with single- to multi-sensor hardware systems that can incorporate an increasing number of segments that are in compliance with the standards of the International Society of Biomechanics (ISB).

Methods

The initial system developed by our group was a single, six-axis, …


Automation Of Orthodontic Wire Tester For Performing Three Point Bending Tests, Adithya Venkatesan Aug 2011

Automation Of Orthodontic Wire Tester For Performing Three Point Bending Tests, Adithya Venkatesan

Master's Theses

Abstract

Understanding the biomechanical factors in orthodontics is important in order to improve the overall effectiveness of actual clinical treatment. An accurate method to study the threedimensional (3D) force systems and the resulting movements of teeth during orthodontic treatment is needed along with the understanding of the material properties of any orthodontic wire. Until recently, most of the orthodontic biomechanics literature was limited to twodimensional experimental studies. Recent advances in threedimensional computer modeling have also been developed but have been limited to the manual control of tooth movement. Overall, there is very little published evidence in the literature on the …


Dynamics, Electromyography And Vibroarthrography As Non-Invasive Diagnostic Tools: Investigation Of The Patellofemoral Joint, Filip Leszko Aug 2011

Dynamics, Electromyography And Vibroarthrography As Non-Invasive Diagnostic Tools: Investigation Of The Patellofemoral Joint, Filip Leszko

Doctoral Dissertations

The knee joint plays an essential role in the human musculoskeletal system. It has evolved to withstand extreme loading conditions, while providing almost frictionless joint movement. However, its performance may be disrupted by disease, anatomical deformities, soft tissue imbalance or injury. Knee disorders are often puzzling, and accurate diagnosis may be challenging. Current evaluation approach is usually limited to a detailed interview with the patient, careful physical examination and radiographic imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissue conditions. More advanced imaging tools such as MRI or CT are available, …


Development Of An Experimental Model To Quantify Lumbar Spine Kinematics During Military Seat Ejection, Steven George Storvik Jul 2011

Development Of An Experimental Model To Quantify Lumbar Spine Kinematics During Military Seat Ejection, Steven George Storvik

Master's Theses (2009 -)

The initial phase of a military ejection sequence exerts substantial axial loads on the spinal column. Eccentric inertial loading on the thoracolumbar spine can lead to injury. Most serious injuries due to ejection are in the form of a vertebral fracture, most commonly occurring at the thoracolumbar junction. The objective of the current study was to understand characteristics of a military seat ejection by employing an experimental model designed to simulate the boost or in-rail phase. The model incorporates realistic boundary conditions and is capable of quantifying metrics associated with injury tolerance such as applied accelerations and resultant loads and …


Finite Element Analysis Of The Effect Of Low-Speed Rear End Collisions On The Medial Meniscus, Daniel J. Tichon May 2011

Finite Element Analysis Of The Effect Of Low-Speed Rear End Collisions On The Medial Meniscus, Daniel J. Tichon

Master's Theses

Low-speed, rear end vehicle collisions can inflict soft tissue damage to the passenger’s knees, especially the medial meniscus, which has been previously unexplained in published literature. It is difficult to determine if factors such as age or other injury was the primary cause of the injury or if the accident acutely caused the meniscal tear. Rear end collisions may produce a combination of compressive loading and torque about the knee that will injure the medial meniscus during the initial impact and the rebound phase. The purpose of this study is to determine if it is possible for rear end low-speed …


Noninvasive Assessment Of Joint Motion Over Long Durations: System Evaluation And Data Analysis Methods, Maria J. Qadri May 2011

Noninvasive Assessment Of Joint Motion Over Long Durations: System Evaluation And Data Analysis Methods, Maria J. Qadri

Master's Theses

The development, progression, and treatment of degenerative musculoskeletal diseases, such as carpal tunnel and shoulder impingement syndromes, may be better characterized when joint motions are assessed over long durations outside clinical, laboratory, or rehabilitation settings that involve standardized assessment, exercise protocols, and/or regimented movements. Assessment methods for human movement capture beyond laboratory or clinical experiments are typically limited to short capture times of less than one hour. Noninvasive, long-duration measurements of joint motion in occupational settings provides more insight into movement patterns and quantitative assessments regarding joint usage, which lead to a better understanding of the cumulative effects associated with …


Development Of An Active Elbow Motion Simulator And Coordinate Systems To Evaluate Kinematics In Multiple Positions, Louis M. Ferreira Jan 2011

Development Of An Active Elbow Motion Simulator And Coordinate Systems To Evaluate Kinematics In Multiple Positions, Louis M. Ferreira

Electronic Thesis and Dissertation Repository

Elbow disorders are common as a consequence of both traumatic and degenerative conditions. Relative to disorders of the lower limb, there is comparatively little evidence to direct the treatment of many elbow disorders. Biomechanical studies are required to develop and validate the optimal treatment of elbow disorders prior to their application in patients. Clinically relevant simulation of elbow motion in the laboratory can be a powerful tool to advance our knowledge of elbow disorders. This work was undertaken with the rationale that simulation and quantification of elbow motion could be improved significantly. This treatise includes the development and evaluation of …


Development Of An Approach To Increase Drug Uptake To Bone Tumors Using Non-Invasive Mechanical Loading, Paolo E. Palacio Jan 2011

Development Of An Approach To Increase Drug Uptake To Bone Tumors Using Non-Invasive Mechanical Loading, Paolo E. Palacio

Dissertations and Theses

This thesis develops an approach to enhance drug delivery to bone tumors by implementing a non-invasive mechanical loading technique. An imaging protocol that characterizes the load-enhanced drug uptake is also presented. The long-term goal of this work is to develop a clinical protocol that enhances the delivery of therapeutic agents to bone tumors by utilizing load-bearing activity. This easy-to-implement approach could help increase drug uptake into the tumor interstitial fluid space as well as into tumor cells, thereby enhancing a drug's clinical effect while decreasing systemic drug dosage and unwanted side effects. This thesis details the process used to grow …


Cervical Spine Biomechanical Behavior And Injury, Mbulelo T. Makola Jan 2011

Cervical Spine Biomechanical Behavior And Injury, Mbulelo T. Makola

Browse all Theses and Dissertations

A finite element model of the cervical spine including the C2 through C7 levels was developed in order to study the behavior of the cervical spine region. The model was validated in flexion extension, bending, and rotational load scenarios. The model was found to represent the biomechanical behavior of the cervical spine. The validated cervical spine finite element model was used to study spinal injury and disease processes. The model provided qualitative estimates of load carrying and stress distribution as well as range of motion.