Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Biomechanical Evaluation Of Two Methods Of Humeral Shaft Fixation, Joshua Catanzarite Jul 2008

Biomechanical Evaluation Of Two Methods Of Humeral Shaft Fixation, Joshua Catanzarite

All Theses

Biomechanical evaluations of fracture fixation devices attempt to determine implant performance by approximating the in vivo conditions. This performance is affected by many factors and relies on the complex bone-implant interface. Biomechanical tests can be designed in a variety of ways in order to evaluate device performance with respect to any number of these bone-implant interactions. Standardized tests, designed by groups such as the American Society for Testing and Materials (ASTM), are often designed either to determine the performance of a specific type of fixation device or for direct comparison between different devices. Additionally, many biomechanical evaluations are designed for …


Biomechanical And Radiographic Evaluation Of An Ovine Model For The Human Lumbar Spine, Nina E. Easley, M. Wang, Linda M. Mcgrady, Jeffrey M. Toth Jun 2008

Biomechanical And Radiographic Evaluation Of An Ovine Model For The Human Lumbar Spine, Nina E. Easley, M. Wang, Linda M. Mcgrady, Jeffrey M. Toth

Biomedical Engineering Faculty Research and Publications

While various species of animal models have been used in preclinical investigations of spinal implant devices to assess their biological adaptation and biomechanical performance, few studies have made comprehensive comparisons to validate their suitability of modelling the human spine. The purpose of this study was to assess essential biomechanical behaviours and disc morphology of the ovine lumbar model. Flexibility testing was conducted on the spines (L3—L4 and L4—L5) of nine skeletally matured sheep. Segmental rotation and intradiscal pressure were measured and load sharing between the intervertebral disc and posterior elements were calculated on the basis of a simplified parallel spring …


Relationship Between Arch Height And Midfoot Joint Pressures During Gait, Dong Gil Lee Jan 2008

Relationship Between Arch Height And Midfoot Joint Pressures During Gait, Dong Gil Lee

ETD Archive

A foot arch is a multi-segmented curved structure which acts as a spring during locomotion. It is well known that ligaments are important components contributing to this spring-like property of the arch. In addition, intrinsic and extrinsic foot muscles contribute to arch support. According to the windlass foot model, arch height and midfoot joint orientation change during gait. However, it is not known whether altered joint configurations result in increased joint stress during gait. If so, it is possible for there to be a "vicious cycle" in which joint stress increases as the arch height diminishes, which may then lead …