Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

3d Printing With Photopolymerizable Polyester Resins For Resorbable Medical Device Applications, Mathew Murphy Stanford May 2023

3d Printing With Photopolymerizable Polyester Resins For Resorbable Medical Device Applications, Mathew Murphy Stanford

All Dissertations

In the past decade, the healthcare industry has seen a significant increase in the use of additive manufacturing (AM or “3D printing”) with subsequent improvement in clinical outcomes.As an exceptional AM technology, vat-photopolymerization (VP), often called stereolithography, can create complex structures and has thus been adopted for a range of biomedical applications including surgical guides, temporary implants, and resorbable tissue scaffolds.However, limitations remain in the availability of photopolymerizable resin materials with appropriate mechanical performance, biodegradability, and biocompatibility for application to resorbable medical devices.

The objective of this work was to employ novel photopolymerizable polyester-based macromers in the development of resorbable …


Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle Dec 2022

Optimized 3d-Printing Of Carbon Fiber-Reinforced Polyether-Ether-Ketone (Cfr-Peek) For Use In Overmolded Lattice Composite, Ryan C. Ogle

Masters Theses

Current orthopedic implants are overwhelmingly composed from metallic materials. These implants show superior mechanical properties, but this can additionally result in stress shielding due to a modulus mismatch between the bone tissue and implanted device. Polymeric implants reduce this stress shielding effect but have much lower mechanical properties, limiting their use. Polylactic acid (PLA) is a widely used biodegradable thermoplastic polymer, however, its use has been limited by the polymer’s mechanical properties and rapid loss of strength during degradation in vivo. Polyether-ether-ketone (PEEK) is another common biocompatible polymer , with chemical and mechanical properties which make it a popular alternative …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace May 2022

Single Asperity Fretting Corrosion Of Traditional And Additively Manufactured Metallic Biomaterials: Quantitative Analysis From Acetabular Tapers To Micron And Nanometer Scale Tribocorrosion, Annsley Mace

All Dissertations

Mechanically assisted crevice corrosion (MACC) of metallic biomaterials continues to be a significant degradation mode. This is, in part, due to a lack of understanding of fundamental micron- and sub-micron scale mechanisms of metal degradation in biological environments. Metal-metal (or metal-hard) load bearing surfaces of hip arthroplasties are subjected to fretting crevice corrosion (FCC, one form of MACC). Current work in tribocorrosion involves large contact area tests with multiple asperities, with a distribution of load and wear that changes over time. A more systematic and controlled study of the FCC micro- and nanomechanics is needed.

Therefore, the goal of this …


Cost-Effective Non-Destructive Testing Of Biomedical Components Fabricated Using Additive Manufacturing, Santiago Fabian Cobos Mar 2022

Cost-Effective Non-Destructive Testing Of Biomedical Components Fabricated Using Additive Manufacturing, Santiago Fabian Cobos

Electronic Thesis and Dissertation Repository

Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of …


3d Printing In Low Resource Healthcare Settings: Analysis Of Potential Implementations, Alenna Beroza Jan 2019

3d Printing In Low Resource Healthcare Settings: Analysis Of Potential Implementations, Alenna Beroza

Dissertations, Master's Theses and Master's Reports

3D printing has gained significant momentum in the past ten years, and its unique advantages make it especially ideal for use in low resource healthcare settings, where many designs have already been successfully implemented. Yet, little has been studied on how 3D printing can be sustainably and functionally implemented in low resource healthcare systems as a manufacturing practice. In this report, three business models are proposed for this implementation: In-House Operator, Independent Operator, and Print Farm. These models were then tested over four months in Kisumu county, Kenya, at two workshops and seven public hospitals. I worked with local medical …


Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli Jan 2019

Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli

Williams Honors College, Honors Research Projects

Worldwide incidence of bone disorders and conditions, an already prevalent problem, is expected to double by 2020 from the rate in 2013 due to factors such as higher life expectancies and lower levels of physical activity. Every year in the United States, over half a million patients receive bone defect repairs, with costs greater than $2.5 billion. Current repairs are typically done with bone grafts, which are often costly and can result in added complications in the donor surgical site. Tissue engineering, a growing field that seeks to assist and enhance tissue defect repairs through the use of synthetic materials, …


Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman Oct 2014

Nanotechnology And Additive Manufacturing Platforms For Clinical Medicine: An Investigation Of 3d Printing Bioactive Constructs And Halloysite Nanotubes For Drug Delivery And Biomaterials, Jeffery A. Weisman

Doctoral Dissertations

Personalized medicine requires the development of new technologies for controlled or targeted drug delivery. Three-dimensional (3D) printing and additive manufacturing techniques can be used to generate customized constructs for bioactive compound delivery. Nanotechnology in the form of nanoparticles, used as a stand-alone construct or for material enhancements, can significantly improve established biomaterials such as PMMA based bone cements or enable new technology to have enhanced capabilities. Combinations of the technologies can be used in such applications as infectious disease treatments, chemotherapeutic targeted drug delivery or targeted delivery of nearly any bioactive compound.

Chemotherapeutic or antibiotic enhanced 3D printing filaments were …