Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon Jul 2014

Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon

Electronic Thesis and Dissertation Repository

The development of new and improved biomaterials is essential for tissue engineering and regenerative medicine applications. Amino acid-based polyphosphazenes are being explored as scaffold materials for tissue engineering applications due to their non-toxic degradation products and tunable material properties. This work focuses on the synthesis of non-functional and novel functional poly[(amino acid ester)phosphazene]s using a facile method of thermal ring opening polymerization followed by one-pot room temperature substitution. The family of polyphosphazenes developed in this work is based on L-alanine (PNEAs), L-phenylalanine (PNEFs), and L-methionine (PNEMs) with L-glutamic acid imparting the functionality. Characterization of these materials demonstrated that the one-pot …


Characterizing The Reproducibility Of The Properties Of Electrospun Poly(D, L-Lactide-Co-Glycolide) Scaffolds For Tissue-Engineered Blood Vessel Mimics, Toni M. Pipes Jun 2014

Characterizing The Reproducibility Of The Properties Of Electrospun Poly(D, L-Lactide-Co-Glycolide) Scaffolds For Tissue-Engineered Blood Vessel Mimics, Toni M. Pipes

Master's Theses

“Blood vessel mimics” (BVMs) are tissue-engineered constructs that serve as in vitro preclinical testing models for intravascular devices. The Cal Poly Tissue Engineering lab specifically uses BVMs to test the cellular response to stent implantation. PLGA scaffolds are electrospun in-house using the current “Standard Protocol” and used as the framework for these constructs. The performance of BVMs greatly depends on material and mechanical properties of the scaffolds. It is desirable to create BVMs with reproducible properties so that they can be consistent models that ultimately generate more reliable results for intravascular device testing. Reproducibility stems from the consistency of the …


Engineering Bacterial Cellulose Scaffold And Its Biomimetic Composites For Bone And Cartilage Tissue Regeneration, Pelagie Marlene Favi May 2014

Engineering Bacterial Cellulose Scaffold And Its Biomimetic Composites For Bone And Cartilage Tissue Regeneration, Pelagie Marlene Favi

Doctoral Dissertations

A very promising approach to quickly and safely restore normal function to extensively damages and diseases bone and cartilage tissues is the regeneration of these injured tissues using an engineered support scaffold. This dissertation research focuses on the development and evaluation of native bacterial cellulose (BC) and chemically modified BCs as potential biomaterials for bone and cartilage regeneration using equine-derived bone marrow mesenchymal stem cells (EqMSCs).

The ability of native BC scaffold to maintain cell proliferation, viability, and in vitro differentiation of the seeded EqMSCs for application in bone and cartilage tissue engineering was studied. BC morphology was characterized using …


Human Hair Keratin Protein, Hair Fibers And Hydroxyapatite (Ha) Composite Scaffold For Bone Tissue Regeneration, Samuel Siyum Jan 2014

Human Hair Keratin Protein, Hair Fibers And Hydroxyapatite (Ha) Composite Scaffold For Bone Tissue Regeneration, Samuel Siyum

ETD Archive

The field of tissue engineering aims at promoting the regeneration of tissues or replacement of failing or malfunctioning tissue by means of combining a scaffold material, adequate cells and bioactive molecules. Different materials have been proposed for use as three-dimensional porous scaffolds for bone tissue engineering procedures. Among them, polymers of natural origin are one of the most attractive options mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this study, two biocompatible composite scaffolds were developed from natural polymer by tissue engineering approach and tested in vitro. The …