Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi Dec 2012

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi

Electronic Thesis and Dissertation Repository

The Tympanic Membrane (TM), also known as the eardrum, includes layers of organized collagen nanofibres which play an essential role in sound transmission. Perforations that are caused by infection or accident must be repaired in order to restore hearing. Tympanoplasty is performed using grafts that are prepared from bladder, cartilage, temporal fascia and cadaveric skin. However, since mechanical properties of these grafts do not match those of the original TM, normal hearing is not fully restored. The goal of this study is to develop nanofibrous scaffolds for tissue engineering of the TM in order to circumvent the complications addressed with …


Integrated Fiber Electrospinning: Creating Spatially Complex Electrospun Scaffolds With Minimal Delamination, Casey Grey Aug 2012

Integrated Fiber Electrospinning: Creating Spatially Complex Electrospun Scaffolds With Minimal Delamination, Casey Grey

Theses and Dissertations

Tissue engineering scaffolds come in many shapes and sizes, however, due to difficulty manufacturing the microstructure architecture required in tissue engineering, most scaffolds are architecturally non-dynamic in nature. Because the microstructural architecture of all biological tissues is inherently complicated, non-dynamic tissue engineering scaffolds tend to be a poor platform for tissue regeneration. The current method for manufacturing dynamic tissue engineering scaffolds involves electrospinning successive layers of different fibers, an approach that exhibits no fiber transition between layers and subsequent delamination problems. In this study we aim to address the design challenges of tissue engineering scaffolds through our novel integrated fiber …


Preparation And Characterization Of A Self-Crimp Side-By-Side Bicomponent Electrospun Material, Yang Han Aug 2012

Preparation And Characterization Of A Self-Crimp Side-By-Side Bicomponent Electrospun Material, Yang Han

Theses and Dissertations

Bicomponent composite fibers have been widely used in the textile industry and are gaining increasing attention on biomedical applications. In this research, polycaprolactone/poly (lactic acid) side-by-side bicomponent fibers were created for the application of a biodegradable scaffold. The side-by-side structure endowed the fiber with self-crimps when it was processed under certain conditions. This material was produced by electrospinning and collected on a high speed rotating mandrel to get highly oriented fibers. A mechanical stretch at the same direction was done followed by a wet heat treatment for polymer retraction. Crimped fibers were demonstrated by scanning electron microscopy. The quantitative porosity …


Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi Jul 2012

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi

Master's Theses

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing

Navid Djassemi

Tissue engineering blood vessel mimics has been proposed as a method to analyze the endothelial cell response to intravascular devices that are used in today’s clinical settings for the treatment of cardiovascular disease. Thus, the development of in vitro blood vessel mimics (BVMs) in Cal Poly’s Tissue Engineering Lab has introduced the possibility of assessing the characteristics of cellular response to past, present, and future intravascular devices that aim at treating coronary artery disease.

This thesis aimed at improving the methods and procedures utilized in …


Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian Jul 2012

Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian

Master's Theses

The development of treatments for neurological disorders such as Alzheimer’s and Parkinson’s disease begins by understanding what these diseases affect and the consequences of further manifestation. One particular region where these diseases can produce substantial problems is the blood-brain barrier (BBB). The BBB is the selective diffusion barrier between the circulating blood and the brain. The barrier’s main function is to maintain CNS homeostasis and protect the brain from the extracellular environment. The progression of BBB research has advanced to the point where many have modeled the BBB in vitro with aims of further characterizing and testing the barrier. Particularly, …


Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur Jun 2012

Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur

Biomedical Engineering

Tissue engineered blood vessels (TEBV’s) have the potential to act not only as a replacement for diseased vessels, but also as a testing platform for intravascular devices such as stents. To this end, the goal of this study was to develop protocols for the construction of TEBV’s composed of human vascular cells and either expanded polytetrafluoroethylene (ePTFE) or poly-lactic-co-glycolic acid (PLGA), as well as a protocol for gene expression in those TEBV’s. Initial experiments involved only human umbilical vein endothelial cells (HUVEC’s), but after low cell confluency and spreading in single-sodded vessels a second cell type, human umbilical vein smooth …


In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin May 2012

In Vivo Immunotoxicological Evaluation Of Electrospun Polycaprolactone (Epcl) And Investigation Of Epcl As A Drug Delivery System For Immunomodulatory Compounds, Colleen Mcloughlin

Theses and Dissertations

Electrospun materials have potential use in many biomedical applications such as soft tissue replacements or as scaffolds to target drug delivery to local sites. Electrospinning is a polymer processing technique that can be used to create materials composed of fibers with diameters ranging from the micron to the nanoscale. We investigated the effects of microfibrous and nanofibrous electrospun polycaprolactone (EPCL) on innate, cell-mediated, and humoral components of the immune system. Results demonstrated that in both young (12 week) and old (6 month) mice, EPCL had no effect on various immune parameters. With its lack of immunotoxicity, EPCL presents an excellent …


Effects Of Different Microenvironmental Conditions On The Growth And Differentiation Of Dental Pulp Stem Cells, Matthew Cupelli May 2012

Effects Of Different Microenvironmental Conditions On The Growth And Differentiation Of Dental Pulp Stem Cells, Matthew Cupelli

All Theses

Human teeth are very complex structures that are susceptible to many different pathologies due to poor dental health. Currently, there are many restorative methods to reestablish some of the function that teeth have, but the materials used in these methods all have drawbacks and cannot fully mimic the native teeth. Tissue engineering research groups have begun to explore regenerating bone or dental tissue using mesenchymal stem cells derived from the bone marrow. However, our group focuses on regenerating dental tissues using multipotent stem cells from dental pulp.
Dental pulp stem cells (DPSCs) have shown similarities to bone marrow stem cells …


Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia Jan 2012

Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia

Legacy Theses & Dissertations (2009 - 2024)

The salivary gland is a complex organ exhibiting a branching, 3-dimensional structure made up of acinar (saliva-producing), and ductal (saliva transporting and modifying) epithelial cells. The high surface area of the gland allows it to efficiently provide the mouth with saliva, maintaining oral cleanliness and comfort. Salivary gland hypofunction, a significant clinical problem often caused by the autoimmune disease Sjögren's syndrome or head and neck radiation for cancer patients, affects millions of Americans and is characterized by a loss of function of salivary gland acinar cells. Chronic xerostomia, or dry mouth, arises as a result of salivary gland hypofunction and …


Dynamic Endothelialization Of Aortic Heart Valve Scaffolds, Richard Pascal Jan 2012

Dynamic Endothelialization Of Aortic Heart Valve Scaffolds, Richard Pascal

All Theses

Cardiovascular disease is the number one killer worldwide affecting both the heart and blood vessels. Valvular heart disease can arise from calcification, and structural deterioration resulting in a stenotic or regurgitant valve incapable of proper function. With approximately 275,000 valve replacements performed annually worldwide, the need for replacement heart valves is well established. Currently, treatment of valvular heart disease is limited to two options (mechanical and bioprosthetic). Both replacement valves have their own drawbacks, which have driven research in the bioengineering field to focus on the development of a tissue engineered heart valve (TEHV) capable of growth and self-repair.
A …