Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Theses/Dissertations

2011

Electrospinning

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Tissue Engineering An Acellular Bioresorbable Vascular Graft To Promote Regeneration, Patricia Wolfe Nov 2011

Tissue Engineering An Acellular Bioresorbable Vascular Graft To Promote Regeneration, Patricia Wolfe

Theses and Dissertations

Tissue engineering is an interdisciplinary field that aims to restore, maintain, or improve diseased or damaged tissues. Electrospinning has become one of the most popular means to fabricate a scaffold for various tissue engineering applications as the process is extremely versatile and inexpensive. The ability for electrospinning to consistently create nanofibrous structures capable of mimicking the native extracellular matrix (ECM) is the basis behind why this technique is so successful in tissue engineering. Cardiovascular disease has been the leading cause of death in the United States for over 100 years, and because of this, the need for coronary artery replacements …


Silk Fibroin-Based Scaffolds For Tissue Engineering Applications, Jennifer Mccool Jul 2011

Silk Fibroin-Based Scaffolds For Tissue Engineering Applications, Jennifer Mccool

Theses and Dissertations

This study focused on the comparison of the electrospun silk scaffolds to the electrospun silk fibroin gel scaffolds. Moreover, this study examined the differences in cross-linking effects of genipin and methanol as well as solvents on the mechanical properties and cell compatibility of the scaffolds. Silk scaffolds were electrospun from an aqueous solution or 1,1,1,3,3-hexafluoro-2-propanol (HFIP) without genipin, immediately after 8 % (wt) genipin was added to the solution, and 18 hours after genipin blended with the solution. Uniaxial tensile testing determined that the silk scaffolds electrospun from water exhibit a higher modulus and peak stress than that of the …


A 3-Dimensional Vascularized Cardiac Tri-Culture Model Using Chitosan Nanofiber Scaffolds, Ali Hussain May 2011

A 3-Dimensional Vascularized Cardiac Tri-Culture Model Using Chitosan Nanofiber Scaffolds, Ali Hussain

Dissertations

The development of an in vitro tissue model that can mimic the 3-dimenisonal (3-D) cellular architecture and mosaic of myocardial tissue holds great value for cardiac tissue engineering, modeling, and cardiovascular drug screening applications. The main objective of this project was to develop a 3-D vascularized cardiac tissue model in vitro for improved survival and function.

The cellular mosaic of the myocardial tissue demands the intricate integration of an extracellular matrix-like scaffold, cellular constituents, and biological factors. The first aim of the research was to fabricate and characterize a biodegradable chitosan nanofiber scaffold that would resemble the extracellular matrix (ECM) …


Novel Nanofiber Structures And Advanced Tissue Engineering Applications, Vince Beachley May 2011

Novel Nanofiber Structures And Advanced Tissue Engineering Applications, Vince Beachley

All Dissertations

Extracellular matrix (ECM) nanofibers such as collagen and elastin make up an important component of natural tissues. These structural components serve to impart mechanical strength and provide locations for cell attachment and biomolecule storage. Cells respond to their structural environment in a wide variety of ways beyond physical support, and it has been demonstrated that this environment directly modulates cell behaviors such as, morphology, differentiation, ECM production, attachment, and migration. ECM nanofibers also play an important role as a template for tissue formation during development, remodeling, and regeneration. Nanofiber based tissue engineering strategies aim to mimic the geometry of the …