Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Selected Works

2014

Articles 1 - 30 of 49

Full-Text Articles in Engineering

Performance Comparison Of Windowing Techniques For Ecg Signal Enhancement, Innovative Research Publications Irp India, K.Sravan Kumar, Babak Yazdanpanah, Dr.G.S.N Raju Dec 2014

Performance Comparison Of Windowing Techniques For Ecg Signal Enhancement, Innovative Research Publications Irp India, K.Sravan Kumar, Babak Yazdanpanah, Dr.G.S.N Raju

Innovative Research Publications IRP India

Electrocardiogram (ECG) signal is generally corrupted by various artifacts like baseline wander, power line interference (50/60 Hz) and electromyography noise and these must be removed before diagnosis. The task propounded in this article is removal of low frequency interference i.e. baseline wandering and high frequency noise i.e. electromyography in ECG signal and digital filters are implemented to delete it. The digital filters accomplished are FIR with various windowing methods as of Rectangular, Hann, Blackman, Hamming, and Kaiser. The results received are at order of 300,450,600.The signal taken of the MIT-BIH database which contains the normal and abnormal waveforms. The work …


Estimating Effective Connectivity From Fmri Data Using Factor-Based Subspace Autoregressive Models, Chee-Ming Ting Phd, Abd-Krim Seghouane Phd, Sh-Hussain Salleh Phd, Alias M. Noor Phd Oct 2014

Estimating Effective Connectivity From Fmri Data Using Factor-Based Subspace Autoregressive Models, Chee-Ming Ting Phd, Abd-Krim Seghouane Phd, Sh-Hussain Salleh Phd, Alias M. Noor Phd

Chee-Ming Ting

We consider the problem of identifying large-scale effective connectivity of brain networks from fMRI data. Standard vector autoregressive (VAR) models fail to estimate reliably networks with large number of nodes. We propose a new method based on factor modeling for reliable and efficient high-dimensional VAR analysis of large networks. We develop a subspace VAR (SVAR) model from a factor model (FM), where observations are driven by a lower-dimensional subspace of common latent factors with an AR dynamics. We consider two variants of principal components (PC) methods that provide consistent estimates for the FM hence the implied SVAR model, even of …


Metastatic Tumor Evolution In Di#3;Use Gastric Cancer And Cancer Organoid Modeling Implicate Tgfbr2 As A Potential Driver, Patrick Flaherty Aug 2014

Metastatic Tumor Evolution In Di#3;Use Gastric Cancer And Cancer Organoid Modeling Implicate Tgfbr2 As A Potential Driver, Patrick Flaherty

Patrick Flaherty

Background: Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric
cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome proband and its recurrence as an ovarian metastasis.
Results: Both the primary tumor and ovarian metastasis have common biallelic loss-of-function of both the CDH1 and TP53 tumor suppressors, indicating a common genetic origin. While the primary tumor exhibits amplification of …


Full-Field Vibrometry By High-Speed Digital Holography For Middle-Ear Mechanics, Ivo Dobrev Aug 2014

Full-Field Vibrometry By High-Speed Digital Holography For Middle-Ear Mechanics, Ivo Dobrev

Ivo Dobrev

Hearing loss affects approximately 1 in 10 people in the world and this percentage is increasing every year. Some of the most common courses for hearing loss are disorders of the human tympanic membrane (TM or eardrum) and middle-ear. Early detection and diagnosis of hearing loss as well as research and understanding of the hearing process depend on medical and research tools for quantification of the hearing capabilities, including the function of the human TM in the complex acoustic-mechanical transformation of environmental sounds into vibrations of the middle- and the inner-ear. Current ear exams are assessing the state of the …


Visuomotor Learning Enhanced By Augmenting Instantaneous Trajectory Error Feedback During Reaching, James Patton, John Yejun, Preeti Bajaj, Robert Scheidt Aug 2014

Visuomotor Learning Enhanced By Augmenting Instantaneous Trajectory Error Feedback During Reaching, James Patton, John Yejun, Preeti Bajaj, Robert Scheidt

Robert Scheidt

We studied reach adaptation to a 30u visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while …


Visuo-Proprioceptive Interactions During Adaptation Of The Human Reach, Timothy Judkins, Robert Scheidt Aug 2014

Visuo-Proprioceptive Interactions During Adaptation Of The Human Reach, Timothy Judkins, Robert Scheidt

Robert Scheidt

We examined whether visual and proprioceptive estimates of transient (mid-reach) target capture errors contribute to motor adaptation according to the probabilistic rules of information integration used for perception. Healthy adult humans grasped and moved a robotic handle between targets in the horizontal plane while the robot generated spring-like loads that varied unpredictably from trial-to-trial. For some trials, a visual cursor faithfully tracked hand motion. In others, the handle's position was locked and subjects viewed motion of a point-mass cursor driven by hand forces. In yet other trials, cursor feedback was dissociated from hand motion or altogether eliminated. We used time- …


Some Analytic And Finite Element Solutions Of The Graphene Euler Beam, Dongming Wei Jul 2014

Some Analytic And Finite Element Solutions Of The Graphene Euler Beam, Dongming Wei

Dongming Wei

No abstract provided.


Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman Jul 2014

Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman

Md Mahmudur Rahman

It is widely accepted that cells behave differently responding to the stiffness of their extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells may sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate both hypotheses, we developed a method to fabricate Janus polyacrylamide (PAAM) gels. We squeeze two drops of different concentrations in the Hele-Shaw geometry to generate radial Stokes flow. When the drops coalesce, limited mixing occurs at the interface due to the narrow confinement, and diffusion normal …


Perspectives For Titanium-Derived Fillers Usage On Denture Base Composite Construction, Nidal Elshereksi Jul 2014

Perspectives For Titanium-Derived Fillers Usage On Denture Base Composite Construction, Nidal Elshereksi

Nidal Elshereksi

Poly(methyl methacrylate) (PMMA) is an extensively used material in dentistry because of its aesthetics, processability, and reparability. However, PMMA is still far from being ideal in fulfilling the mechanical requirements of prosthesis. PMMA-based denture base polymers exhibit low fracture resistance and radiopacity behavior. Efforts to improve the mechanical and radiopacity properties of denture base materials through inclusion of silica-based fillers are ongoing. Although silane-treated siliceous fillers are commonly used, they are not sufficiently strong.They also exhibit cracks, which either cut through the glass fillers or propagate around the filler particles. This defect occurs when the dental composites are placed in …


Real-Time Simulation Of Three-Dimensional Shoulder Girdle And Arm Dynamics, Edward K. Chadwick, Dimitra Blana, Robert F. Kirsch, Antonie J. Van Den Bogert Jul 2014

Real-Time Simulation Of Three-Dimensional Shoulder Girdle And Arm Dynamics, Edward K. Chadwick, Dimitra Blana, Robert F. Kirsch, Antonie J. Van Den Bogert

Antonie J. van den Bogert

Electrical stimulation is a promising technology for the restoration of arm function in paralyzed individuals. Control of the paralyzed arm under electrical stimulation, however, is a challenging problem that requires advanced controllers and command interfaces for the user. A real-time model describing the complex dynamics of the arm would allow user-in-the-loop type experiments where the command interface and controller could be assessed. Real-time models of the arm previously described have not included the ability to model the independently controlled scapula and clavicle, limiting their utility for clinical applications of this nature. The goal of this study therefore was to evaluate …


How Has The Knee Grand Challenge Improved Musculoskeletal Modeling Research?, Benjamin Fregly, Allison Kinney, Thor Besier, Darryl D'Lima Jun 2014

How Has The Knee Grand Challenge Improved Musculoskeletal Modeling Research?, Benjamin Fregly, Allison Kinney, Thor Besier, Darryl D'Lima

Allison Kinney

No abstract provided.


Feasibility Tuning To Improve Optimization Prediction Of Knee Contact Forces, Allison Kinney, Anil Rao, Benjamin Fregly Jun 2014

Feasibility Tuning To Improve Optimization Prediction Of Knee Contact Forces, Allison Kinney, Anil Rao, Benjamin Fregly

Allison Kinney

No abstract provided.


Predicting Unmeasured Muscle Excitations From Measured Muscle Synergies, Allison Kinney, N. Bianco, Benjamin Fregly Jun 2014

Predicting Unmeasured Muscle Excitations From Measured Muscle Synergies, Allison Kinney, N. Bianco, Benjamin Fregly

Allison Kinney

No abstract provided.


Estimation Of High-Dimensional Brain Connectivity From Fmri Data Using Factor Modeling, Chee-Ming Ting Phd, Abd-Krim Seghouane, Sh-Hussain Salleh, Alias M. Noor Jun 2014

Estimation Of High-Dimensional Brain Connectivity From Fmri Data Using Factor Modeling, Chee-Ming Ting Phd, Abd-Krim Seghouane, Sh-Hussain Salleh, Alias M. Noor

Chee-Ming Ting

We consider identifying effective connectivity of brain networks from fMRI time series. The standard vector autoregressive (VAR) models fail to give reliable network estimates, typically involving very large number of nodes. This paper adopts a dimensionality reduction approach based on factor modeling, to enable effective and efficient high-dimensional VAR analysis of large network connectivity. We derive a subspace VAR (SVAR) model from the factor model (FM) in which the observations are driven by a lower dimensional subspace of common latent factors, following an autoregressive dynamics. We consider the principal components (PC) method which can produce consistent estimators for the FM, …


Estimating Dynamic Cortical Connectivity From Motor Imagery Eeg Using Kalman Smoother & Em Algorithm, S. Balqis Samdin, Chee-Ming Ting Phd, Sh-Hussain Salleh, Mahyar Hamedi, Alias Mohd Noor Jun 2014

Estimating Dynamic Cortical Connectivity From Motor Imagery Eeg Using Kalman Smoother & Em Algorithm, S. Balqis Samdin, Chee-Ming Ting Phd, Sh-Hussain Salleh, Mahyar Hamedi, Alias Mohd Noor

Chee-Ming Ting

This paper considers identifying effective cortical connectivity from scalp EEG. Recent studies use time-varying multivariate autoregressive (TV-MAR) models to better describe the changing connectivity between cortical regions where the TV coefficients are estimated by Kalman filter (KF) within a state-space framework. We extend this approach by incorporating Kalman smoothing (KS) to improve the KF estimates, and the expectation-maximization (EM) algorithm to infer the unknown model parameters from EEG. We also consider solving the volume conduction problem by modeling the induced instantaneous correlations using a full noise covariate. Simulation results show the superiority of KS in tracking the coefficient changes. We …


Angle-Tunable Enhanced Infrared Reflection Absorption Spectroscopy Via Grating-Coupled Surface Plasmon Resonance, Joseph W. Petefish, Andrew C. Hillier Jun 2014

Angle-Tunable Enhanced Infrared Reflection Absorption Spectroscopy Via Grating-Coupled Surface Plasmon Resonance, Joseph W. Petefish, Andrew C. Hillier

Andrew C. Hillier

Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, …


Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jun 2014

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Andrew C. Hillier

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was modified to include a …


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Jun 2014

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Andrew C. Hillier

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with …


Organic Materials And Organic/Inorganic Heterostructures In Atom Probe Tomography, Derk Joester, Andrew C. Hillier, Yi Zhang, Ty J. Prosa Jun 2014

Organic Materials And Organic/Inorganic Heterostructures In Atom Probe Tomography, Derk Joester, Andrew C. Hillier, Yi Zhang, Ty J. Prosa

Andrew C. Hillier

Nano-scale organic/inorganic interfaces are key to a wide range of materials. In many biominerals, for instance bone or teeth, outstanding fracture toughness and wear resistance can be attributed to buried organic/inorganic interfaces. Organic/inorganic interfaces at very small length scales are becoming increasingly important also in nano and electronic materials. For example, functionalized inorganic nanomaterials have great potential in biomedicine or sensing applications. Thin organic films are used to increase the conductivity of LiFePO4 electrodes in lithium ion batteries, and solid electrode interphases (SEI) form by uncontrolled electrolyte decomposition. Organics play a key role in dye-sensitized solar cells, organic photovoltaics, and …


Resonance Quenching And Guided Modes Arising From The Coupling Of Surface Plasmons With A Molecular Resonance, Wei-Hsun Yeh, Joseph W. Petefish, Andrew C. Hillier Jun 2014

Resonance Quenching And Guided Modes Arising From The Coupling Of Surface Plasmons With A Molecular Resonance, Wei-Hsun Yeh, Joseph W. Petefish, Andrew C. Hillier

Andrew C. Hillier

In this paper, we describe experimental and modeling results that illucidate the nature of coupling between surface plasmon polaritons in a thin silver film with the molecular resonance of a zinc phthalocyanine dye film. This coupling leads to several phenomena not generally observed when plasmons are coupled to transparent materials. The increased absorption coefficient near a molecular resonance leads to a discontinuity in the refractive index, which causes branching of the plasmon resonance condition and the appearance of two peaks in the p-polarized reflectance spectrum. A gap exists between these peaks in the region of the spectrum associated with the …


Three-Dimensional Atom Probe Tomography Of Oxide, Anion, And Alkanethiolate Coatings On Gold, Yi Zhang, Andrew C. Hillier Jun 2014

Three-Dimensional Atom Probe Tomography Of Oxide, Anion, And Alkanethiolate Coatings On Gold, Yi Zhang, Andrew C. Hillier

Andrew C. Hillier

We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide …


Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through A Chirped Diffraction Grating, Wei-Hsun Yeh, Justin Kleingartner, Andrew C. Hillier Jun 2014

Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through A Chirped Diffraction Grating, Wei-Hsun Yeh, Justin Kleingartner, Andrew C. Hillier

Andrew C. Hillier

We report the construction and testing of a chirped diffraction grating, which serves as a substrate for surface plasmon-enhanced optical transmission. This grating possesses a spatial variation in both pitch and amplitude along its surface. It was created by plasma oxidation of a curved poly(dimethoxysilane) sheet, which resulted in nonuniform buckling along the polymer surface. A gold-coated replica of this surface elicited an optical response that consisted of a series of narrow, enhanced transmission peaks spread over the visible spectrum. The location and magnitude of these transmission peaks varied along the surface of the grating and coincided with conditions where …


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jun 2014

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Andrew C. Hillier

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. …


Diffraction-Based Tracking Of Surface Plasmon Resonance Enhanced Transmission Through A Gold-Coated Grating, Wei-Hsun Yeh, Joseph W. Petefish, Andrew C. Hillier Jun 2014

Diffraction-Based Tracking Of Surface Plasmon Resonance Enhanced Transmission Through A Gold-Coated Grating, Wei-Hsun Yeh, Joseph W. Petefish, Andrew C. Hillier

Andrew C. Hillier

Surface plasmon resonance enhanced transmission through metal-coated nanostructures represents a highly sensitive yet simple method for quantitative measurement of surface processes and is particularly useful in the development of thin film and adsorption sensors. Diffraction-induced surface plasmon excitation can produce enhanced transmission at select regions of the visible spectrum, and wavelength shifts associated with these transmission peaks can be used to track adsorption processes and film formation. In this report, we describe a simple optical microscope-based method for monitoring the first-order diffracted peaks associated with enhanced transmission through a gold-coated diffraction grating. A Bertrand lens is used to focus the …


Use Of Dispersion Imaging For Grating-Coupled Surface Plasmon Resonance Sensing Of Multilayer Langmuir–Blodgett Films, Wei-Hsun Yeh, Andrew C. Hillier Jun 2014

Use Of Dispersion Imaging For Grating-Coupled Surface Plasmon Resonance Sensing Of Multilayer Langmuir–Blodgett Films, Wei-Hsun Yeh, Andrew C. Hillier

Andrew C. Hillier

We report grating-coupled surface plasmon resonance measurements involving the use of dispersion images to interpret the optical response of a metal-coated grating. Optical transmission through a grating coated with a thin, gold film exhibits features characteristic of the excitation of surface plasmon resonance due to coupling with the nanostructured grating surface. Evidence of numerous surface plasmon modes associated with coupling at both front (gold/air) and back (gold/substrate) grating interfaces is observed. The influence of wavelength and angle of incidence on plasmon coupling can be readily characterized via dispersion images, and the associated image features can be indexed to matching conditions …


Combined Electrochemical Surface Plasmon Resonance For Angle Spread Imaging Of Multielement Electrode Arrays, Andrew C. Hillier, Chang Hoon Choi Jun 2014

Combined Electrochemical Surface Plasmon Resonance For Angle Spread Imaging Of Multielement Electrode Arrays, Andrew C. Hillier, Chang Hoon Choi

Andrew C. Hillier

A surface plasmon resonance imaging system combined with a multielement electrode array is described. An optical system with shaping optics is used to direct a wedge of light onto a gold-coated sample. The reflected light is detected in the form of an angle-spread image of the surface, with one direction denoting a variable incident angle and the other showing a span of locations along one lateral direction of the sample surface. At the proper incident angle, the angle-spread image shows the complete surface plasmon resonance curve over a span of locations on the surface. This imaging system is combined with …


Surface Plasmon Resonance Enhanced Transmission Of Light Through Gold-Coated Diffraction Gratings, Bipin K. Singh, Andrew C. Hillier Jun 2014

Surface Plasmon Resonance Enhanced Transmission Of Light Through Gold-Coated Diffraction Gratings, Bipin K. Singh, Andrew C. Hillier

Andrew C. Hillier

Narrow peaks are observed in the transmission spectra of p-polarized light passing through a thin gold film that is coated on the surface of a transparent diffraction grating. The spectral position and intensity of these peaks can be tuned over a wide range of wavelengths by simple rotation of the grating. The wavelengths where these transmission peaks are observed correspond to conditions where surface plasmon resonance occurs at the gold−air interface. Light diffracted by the grating couples with surface plasmons in the metal film to satisfy the resonant condition, resulting in enhanced light transmission through the film. Notably, this phenomenon …


Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides Jun 2014

Fabrication Of Low-Cost Paper-Based Microfluidic Devices By Embossing Or Cut-And-Stack Methods, Martin M. Thuo, Ramses V. Martinez, Wen-Jie Lan, Xinyu Liu, Jabulani Barber, Manza B. Atkinson, Dineth Bandarage, Jean-Francis Bloch, George M. Whitesides

Martin M. Thuo

This article describes the use of embossing and “cut-and-stack” methods of assembly, to generate microfluidic devices from omniphobic paper and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidic device. The porosity of the paper to gases allows processes not possible in devices made using PDMS or other nonporous materials. Droplet generators and phase separators, for example, could be made by embossing “T”-shaped channels on paper. Vertical stacking of embossed or cut layers of omniphobic paper generated three-dimensional systems of microchannels. The gas permeability of the paper allowed fluid in the microchannel to contact …


Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating …


Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Considerable effort has been expended in efforts to create surfaces that resist the adsorption of proteins and cells for biomedical applications. The majority of such work has focused on surfaces constructed from bulk polymers or thin polymer films. However, the fabrication of surfaces via self-assembled monolayers (SAMs) has attracted considerable interest because of the robustness, versatility, and wide-ranging applicability of these materials. SAMs are particularly appealing for biological systems where well-defined surface chemistries can be created to facilitate coupling, biorecognition, or cell adhesion along with a host of other applications in biochemistry and biotechnology.