Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Electronic Thesis and Dissertation Repository

Theses/Dissertations

2023

Tissue engineering

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack Feb 2023

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack

Electronic Thesis and Dissertation Repository

The delivery of human adipose-derived stromal cells (hASCs) to ischemic tissues represents a promising strategy to promote vascular regeneration for patients with critical limb ischemia (CLI). This thesis focused on the evaluation of hydrogels to enhance the retention and pro-angiogenic capacity of hASCs following delivery in vivo. Additionally, priming strategies to augment the paracrine function of hASCs were developed and assessed.

Recognizing the importance of endogenous macrophages in the pro-regenerative function of hASCs, delivery using a previously-developed hydrogel system, composed of peptide-functionalized methacrylated glycol chitosan (MGC-RGD) and a copolymer of poly(ethylene glycol) and poly(trimethylene carbonate) (PEG(PTMC-A)2), was …


Investigation Of Dynamic Culture On Matrix-Derived Microcarriers As A Strategy To Modulate The Pro-Regenerative Phenotype Of Human Adipose-Derived Stromal Cells, Mckenna R. Tosh Jan 2023

Investigation Of Dynamic Culture On Matrix-Derived Microcarriers As A Strategy To Modulate The Pro-Regenerative Phenotype Of Human Adipose-Derived Stromal Cells, Mckenna R. Tosh

Electronic Thesis and Dissertation Repository

Pre-conditioning of adipose-derived stromal cells (ASCs) by tuning the cellular microenvironment during expansion has the potential to modulate their pro-regenerative functionality. The current study investigated the effects of microcarrier composition (decellularized adipose tissue versus collagen), oxygen tension (2% versus ~20% O2) and stirring rate (static, 20, 40 rpm) on human ASCs cultured within spinner flask bioreactors. Dynamic culturing under 20% O2 resulted in more consistent cell growth on both microcarrier substrates, leading to increases in microcarrier contraction and stiffness. Culturing on the microcarriers modulated the hASC immunophenotype, with varying CD90 and CD26 expression levels observed under the …