Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran Dec 2017

Design, Development, And Characterization Of Breathforce : A Respiratory Training System For Patients With Spinal Cord Injuries., Kevin L Tran

Electronic Theses and Dissertations

Pulmonary and cardiovascular dysfunction are consistently reported as the leading causes of morbidity and mortality among the 1,275,000 people who are living with chronic spinal cord injury (SCI) in the United States. Respiratory-cardiovascular complications from neurological disorders (primarily COPD and sleep apnea) are currently the number one cause of death and disability in the US.

The main goal of this project is to develop an inspiratory-expiratory training device for use in the rehabilitation of patients with respiratory motor and cardiovascular deficits that incorporates existing technologies and promotes successful training methodologies performed at the clinic and at home.

An embedded microprocessor …


Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs Dec 2017

A Novel Approach To Assess Minimally Invasive Surgical Device Failure Utilizing Adverse Event Outcome Severity And Design Complexity., Marie K. Riggs

Electronic Theses and Dissertations

Medical device failure and misuse have the potential to cause serious injury and death. Given the intricate nature of the instruments utilized specifically in minimally invasive surgery (MIS), users and manufacturers of surgical devices share a responsibility in preventing user error and device failure. A novel approach was presented for the evaluation of minimally invasive device failures, which involved assessing the severity of adverse event outcomes associated with the failures modes and investigating aspects of the devices’ design that may contribute to failure. The goals of this research were to 1) characterize the design attributes, failure modes, and adverse events …


Nanocellulose Fibers As A Potential Material For Orthopedic Implantation Application, David Gregg Holomakoff Aug 2017

Nanocellulose Fibers As A Potential Material For Orthopedic Implantation Application, David Gregg Holomakoff

Electronic Theses and Dissertations

The field of biomaterials is of immense importance and will continue to grow and develop in the coming years. Novel materials, as well as new approaches for use of existing materials, are sought after now more than ever. Current metal orthopedic implants have an over engineered stiffness and Young’s modulus, causing a phenomenon called stress shielding. Metal implants absorb the majority of force typically exerted on bone and the osteocytes within. When osteocytes fail to sense mechanical forces bones become less dense and weaken, causing possible fracture and other complications. A new orthopedic material is needed matching Young’s modulus of …


An Automated Device To Increase Screening Throughput Of Zebrafish Larvae, Fuoad Saliou-Sulley Aug 2017

An Automated Device To Increase Screening Throughput Of Zebrafish Larvae, Fuoad Saliou-Sulley

Electronic Theses and Dissertations

The use of the zebrafish as an animal model alternative to mammalian species has spawned research advancements in several medical fields. Since the zebrafish shares a high degree of sequence and functional homology with mammals, studies using this organism can provide in-depth insight into host response to disease and provide a platform for testing a range of treatment options. The optical transparency of zebrafish at early stages of development permits easy assessment of the effects of treatments, occurrence of tumors and other abnormal growth, disease progression, and immune response, to name only a few. These characteristics make it ideal for …


Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne Aug 2017

Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne

Electronic Theses and Dissertations

Based on the principles of cutting edge bone remodeling research, a unique therapeutic exercise device was designed specifically to improve bone quality at the most critical location of the proximal femur prone to fracture: the superior-lateral femoral neck where the fracture first initiates during a fall. The exercise/device is intended to work by inducing enough strain in the bone to stimulate the body’s natural bone remodeling mechanisms to increase bone density in the proximal femur and consequently prevent a fracture from arising if a fall to the side does occur.

In order to test the proposed exercise, experiments simulating the …


Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents Aug 2017

Custom Software For The 3d Printing Of Patient Specific Plate Bending Templates In Pelvic Fracture Repair., Gordon B Lents

Electronic Theses and Dissertations

The purpose of this work is to reduce the operative time and blood loss incurred during open reduction and internal fixation (ORIF) of traumatic pelvic injuries through the creation of patient specific bending templates for reconstruction plates. These templates are 3D printed in a resin capable of being sterilized and taken into the operating room so that bending may be performed by the surgeon before the patient is opened or by another team member in parallel with the surgeon.

A novel software extension was created in 3D modeling software to allow a surgeon to individually position screws on a pelvic …


Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron May 2017

Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron

Electronic Theses and Dissertations

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the …


Examining The Effects Of Macrophage Populations On Cancerous Tumor Growth., Grace E. Mahlbacher May 2017

Examining The Effects Of Macrophage Populations On Cancerous Tumor Growth., Grace E. Mahlbacher

Electronic Theses and Dissertations

The most abundant immune cell types of the tumor microenvironment macrophages recruited there by tumor-eluted factors. The role of these immune cells in tumor progression, and the interplay between tumor and immune cells is an emerging field of research with potential for novel treatment strategies. Here, a TIE2 expressing macrophage (TEM) subtype is integrated into a virtual tumor model. Within the 2D microenvironment, the TEM will differentiate from an extravasated monocyte precursor, congregate around the abluminal side of the vasculature in response to a chemoattractant gradient, secrete cytokines which favor differentiation of a separate angiogenic macrophage subtype [1]. The effects …


A Novel Mra-Based Framework For The Detection Of Changes In Cerebrovascular Blood Pressure., Yitzhak Atakilt Gebru May 2017

A Novel Mra-Based Framework For The Detection Of Changes In Cerebrovascular Blood Pressure., Yitzhak Atakilt Gebru

Electronic Theses and Dissertations

Background: High blood pressure (HBP) affects 75 million adults and is the primary or contributing cause of mortality in 410,000 adults each year in the United States. Chronic HBP leads to cerebrovascular changes and is a significant contributor for strokes, dementia, and cognitive impairment. Non-invasive measurement of changes in cerebral vasculature and blood pressure (BP) may enable physicians to optimally treat HBP patients. This manuscript describes a method to non-invasively quantify changes in cerebral vasculature and BP using Magnetic Resonance Angiography (MRA) imaging.

Methods: MRA images and BP measurements were obtained from patients (n=15, M=8, F=7, Age= 49.2 …


Development Of A Directional Bone Reaming System., Richard J Ackermann May 2017

Development Of A Directional Bone Reaming System., Richard J Ackermann

Electronic Theses and Dissertations

Preparation of long bones such as the femur or tibia for placement of intramedullary devices for the treatment of fractures usually involves reaming with a series of central cutters driven by a drill-like device with a flexible shaft over a guide wire. The reamers sequentially enlarge the intramedullary canal into a tunnel of circular cross-section and a diameter appropriate for the procedure. The current technology is concentric, meaning that the system is self-centering within the original intramedullary canal and the expansion is symmetric with respect to the original centerline. A novel system for laterally deflecting the head of a 12mm …


Development Of Spectroscopic Methods For Dynamic Cellular Level Study Of Biochemical Kinetics And Disease Progression, Anna M. Sitarski Mar 2017

Development Of Spectroscopic Methods For Dynamic Cellular Level Study Of Biochemical Kinetics And Disease Progression, Anna M. Sitarski

Electronic Theses and Dissertations

One of the current fundamental objectives in biomedical research is understanding molecular and cellular mechanisms of disease progression. Recent work in genetics support the stochastic nature of disease progression on the single cell level. For example, recent work has demonstrated that cancer as a disease state is reached after the accumulation of damages that result in genetic errors. Other diseases like Huntingtons, Parkinsons, Alzheimers, cardiovascular disease are developed over time and their cellular mechanisms of disease transition are largely unknown. Modern techniques of disease characterization are perturbative, invasive and fully destructive to biological samples. Many methods need a probe or …


3d Bioprinting Hydrogel For Tissue Engineering An Ascending Aortic Scaffold, Benjamin Stewart Jan 2017

3d Bioprinting Hydrogel For Tissue Engineering An Ascending Aortic Scaffold, Benjamin Stewart

Electronic Theses and Dissertations

The gold standard in 2016 for thoracic aortic grafts is Dacron®, polyethylene terephthalate, due to the durability over time, the low immune response elicited and the propensity for endothelialization of the graft lumen over time. These synthetic grafts provide reliable materials that show remarkable long term patency. Despite the acceptable performance of Dacron® grafts, it is noted that autographs still outperform other types of vascular grafts when available due to recognition of the host's cells and adaptive mechanical properties of a living graft. 3-D bioprinting patient-specific scaffolds for tissue engineering (TE) brings the benefits of non-degrading synthetic …


Mechanical Effects Of Surgical Adhesives On Ascending Thoracic Aortic Aneurysm Replacement, Dong Qiu Jan 2017

Mechanical Effects Of Surgical Adhesives On Ascending Thoracic Aortic Aneurysm Replacement, Dong Qiu

Electronic Theses and Dissertations

Ascending thoracic aortic aneurysm (aTAA) is a potentially lethal disease which grows gradually over time and may lead to aortic dissection and rupture. Currently, aTAA surgical repair using Dacron graft is a well-established treatment. In addition, surgical adhesives are frequently used in the surgeries to seal the anastomotic site. This study aims to investigate mechanical effects of four commonly used surgical adhesives, namely BioGlue, CoSeal, Crosseal, and Tisseel, on the suture site using in-vitro digital image correlation (DIC) method and finite element (FE) simulations in an ovine model. In this study, first, mechanical properties of ovine ascending aorta were obtained …


Computer-Aided Cancer Diagnosis And Grading Via Sparse Directional Image Representations, Hadi Rezaeilouyeh Jan 2017

Computer-Aided Cancer Diagnosis And Grading Via Sparse Directional Image Representations, Hadi Rezaeilouyeh

Electronic Theses and Dissertations

Prostate cancer and breast cancer are the second cause of death among cancers in males and females, respectively. If not diagnosed, prostate and breast cancers can spread and metastasize to other organs and bones and make it impossible for treatment. Hence, early diagnosis of cancer is vital for patient survival. Histopathological evaluation of the tissue is used for cancer diagnosis. The tissue is taken during biopsies and stained using hematoxylin and eosin (H&E) stain. Then a pathologist looks for abnormal changes in the tissue to diagnose and grade the cancer. This process can be time-consuming and subjective. A reliable and …


Statistical Shape Modeling To Quantify Variation In The Proximal Humeral Anatomy, Paul B. Sade Sr. Jan 2017

Statistical Shape Modeling To Quantify Variation In The Proximal Humeral Anatomy, Paul B. Sade Sr.

Electronic Theses and Dissertations

The fit of the humeral prosthesis to the intramedullary canal and the replication of the anatomic humeral head center are important factors in Total Shoulder Arthroplasty (TSA). The objective of this thesis was to develop a Statistical Shape Model (SSM) of the cortical and cancellous bone regions of the proximal humerus, and to assess potential shape differences with gender and ethnicity, with a goal of informing implant design. An SSM was used and Principal Component Analysis (PCA) was applied to data that represented both the cancellous and cortical humeral bone of 63 healthy subjects and cadavers. Anatomical measurements and PC …


Development Of Highly Sensitive And Selective Breathing Sensors Using Molecular Imprinted Filtering For Diabetic And Alcoholic Patients, Md. Saleh Akram Bhuiyan Jan 2017

Development Of Highly Sensitive And Selective Breathing Sensors Using Molecular Imprinted Filtering For Diabetic And Alcoholic Patients, Md. Saleh Akram Bhuiyan

Electronic Theses and Dissertations

Wellness sensor technology is an emerging diagnostic test research field, which mostly deal with the point of care of the patients in the recent days. Due to the lack of awareness from the patients, most diseases cannot be detected in due time. This led to worse conditions, such as diabetic and alcoholic syndrome. Therefore, many research groups have been working to develop portable sensor devices that can track serious diseases. These include diabetic and alcoholic biomarkers in breathing. These devices have very high selectivity and reliability. However, the major limitation of biomarkers is that it deals with the bio-molecular based …


Statistical Shape And Intensity Modeling Of The Shoulder, Irene Sintini Jan 2017

Statistical Shape And Intensity Modeling Of The Shoulder, Irene Sintini

Electronic Theses and Dissertations

Anatomical variability in the shoulder is inherently present and can influence healthy and pathologic biomechanics and ultimately clinical decision-making. Characterizing variation in bony morphology and material properties in the population can support treatment and specifically the design, via shape and sizing, of shoulder implants. Total Shoulder Arthroplasty (TSA) is the treatment of choice for glenohumeral osteoarthritis as well as bone fracture. Complications and poor outcomes in TSA are generally influenced by the inability of the implant to replicate the natural joint biomechanics and by the bone quality around the fixation features. For this reason, knowledge of bony morphology and mechanical …


Segmental Movement Compensations In Patients With Transtibial Amputation Identified Using Angular Momentum Separation, Brecca M. M. Gaffney Jan 2017

Segmental Movement Compensations In Patients With Transtibial Amputation Identified Using Angular Momentum Separation, Brecca M. M. Gaffney

Electronic Theses and Dissertations

Patients with unilateral dysvascular transtibial amputation (TTA) adopt movement compensations that are required to maintain balance and achieve ambulation in the absence of ankle plantar flexion, and result in increased and asymmetric joint loading patterns. As a result, this population is at an increased risk of overuse injuries, such as low back pain (LBP). Clinical gait analysis is used to guide diagnostics in movement retraining following amputation, and is performed using instrumented (research based) or observational analyses (clinically based). However, instrumented analyses are currently impractical in most clinical settings due to expense and computational limitations. This dissertation presents the use …


Six Degrees Of Freedom: Kinematics Of The Healthy Ankle Syndesmosis Joint, Veronica A. Hogg-Cornejo Jan 2017

Six Degrees Of Freedom: Kinematics Of The Healthy Ankle Syndesmosis Joint, Veronica A. Hogg-Cornejo

Electronic Theses and Dissertations

Syndesmotic injury, more commonly known as a "high ankle sprain", accounts for over 12% of all ankle sprain incidents in the US; of which, over 25% occur during a sporting activity. Typically, harm to the syndesmosis occurs in sports such as football, soccer, lacrosse, and hockey where it is common for an athlete to experience rapid and extreme dorsiflexion-external rotations of the foot. Severe syndesmotic sprains have been noted by clinicians as the most difficult ankle injury to accurately diagnose and treat, require the most recuperation time, and often results in life-long dysfunction. Even more problematic, 40% of patients suffering …


Specimen-Specific Natural, Pathological, And Implanted Knee Mechanics Using Finite Element Modeling, Azhar Akber Ali Jan 2017

Specimen-Specific Natural, Pathological, And Implanted Knee Mechanics Using Finite Element Modeling, Azhar Akber Ali

Electronic Theses and Dissertations

There is an increasing incidence of knee pain and injury among the population, and increasing demand for higher knee function in total knee replacement designs. As a result, clinicians and implant manufacturers are interested in improving patient outcomes, and evaluation of knee mechanics is essential for better diagnosis and repair of knee pathologies. Common knee pathologies include osteoarthritis (degradation of the articulating surfaces), patellofemoral pain, and cruciate ligament injury and/or rupture. The complex behavior of knee motion presents unique challenges in the diagnosis of knee pathology and restoration of healthy knee function. Quantifying knee mechanics is essential for developing successful …


A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj Jan 2017

A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj

Electronic Theses and Dissertations

Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user's neural features with robotic machines to perform tasks. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement …