Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 246

Full-Text Articles in Engineering

Impact Of Student Beliefs And Self-Efficacy On Performance In Higher Education Stem Courses, Lauren Nicole Fogg May 2024

Impact Of Student Beliefs And Self-Efficacy On Performance In Higher Education Stem Courses, Lauren Nicole Fogg

Doctoral Dissertations

In engineering education, students often face feelings of inadequacy, leading to academic struggles and potential dropout. This dissertation investigates the impact of interactive course materials on students' confidence and self-efficacy in problem-solving, focusing on an Engineering Materials class at Louisiana Tech University. Over four quarters, involving seven sections and 218 students, a 13-question Likert scale survey was administered repeatedly, alongside demographic data and textbook usage surveys. The study aims to compare students’ attitudes and beliefs when not using a textbook versus when using an interactive web-native book. Hypotheses suggest that the interactive book will enhance problem-solving beliefs, confidence, and grades. …


Development And Feasibility Studies Of Ai-Powered Socially Assistive Robotics To Promote Wellbeing Of Persons With Alzheimer’S Disease And Related Dementias, Fengpei Yuan May 2024

Development And Feasibility Studies Of Ai-Powered Socially Assistive Robotics To Promote Wellbeing Of Persons With Alzheimer’S Disease And Related Dementias, Fengpei Yuan

Doctoral Dissertations

The number of persons living with Alzheimer's Disease and Related Dementias (PLWDs) has been keeping growing. In 2024, it is estimated that there will be approximately 6.7 million individuals living with Alzheimer's Dementia. This number will increase to about 14 million in 2060. Due to the damage in neurons, the capabilities of memory, thinking, and language will decline as the disease progress. As a result, persons with dementia will gradually withdraw from their social activities and become more dependent on others during their activities of daily living. Making it worse, our society is not ready for the increasing requirements of …


A Pattern Matching Algorithm For Self-Adjusting Basal Rates In Insulin Pump Systems, Lauren Smith May 2024

A Pattern Matching Algorithm For Self-Adjusting Basal Rates In Insulin Pump Systems, Lauren Smith

Doctoral Dissertations

In a Type 1 Diabetic, Insulin can be administered in a pump system. There are two types of insulin that must be given: basal and bolus. Basal insulin is a long-acting form of insulin that works in the background while fasting, while Bolus insulin is rapid/short acting given in response to food to immediately begin working to lower blood sugar.

Modeling in Diabetes can be represented by algorithmic approaches ranging from simple autoregressive models of the Continuous Glucose Monitor time series to multivariate nonlinear regression techniques of machine learning. Other examples of modeling in Diabetes include prediction models of hypoglycemia …


The Development And Enhancement Of A Forward Mathematical Model Of The Human Knee Joint, Seth Coomer May 2024

The Development And Enhancement Of A Forward Mathematical Model Of The Human Knee Joint, Seth Coomer

Doctoral Dissertations

Degenerative joint disease, or osteoarthritis, is a common occurrence in the knee joint. This can often result in joint pain, decrease in range of motion, and ultimately disability. One way to counteract osteoarthritis is the incorporation of a total knee arthroplasty (TKA). TKAs replace the damaged bone and soft tissue surrounding the knee with metal and polyethylene components. Ideally this will improve the joint’s performance and reduce pain. However, there is still a number of TKA patients who remain dissatisfied. In order to investigate this, in depth research must be done on the design and performance of TKAs.

One such …


Multimodal Data Fusion And Machine Learning For Advancing Biomedical Applications, Md Inzamam Ul Haque May 2024

Multimodal Data Fusion And Machine Learning For Advancing Biomedical Applications, Md Inzamam Ul Haque

Doctoral Dissertations

This dissertation delves into the intricate landscape of biomedical imaging, examining the transformative potential of data fusion techniques to refine our understanding and diagnosis of health conditions. Daily influxes of diverse biomedical data prompt an exploration into the challenges arising from relying solely on individual imaging modalities. The central premise revolves around the imperative to combine information from varied sources to achieve a holistic comprehension of complex health issues.

The chapters included here contain articles and excerpts from published works. The study unfolds through an examination of four distinct applications of data fusion techniques. It commences with refining clinical task …


Motor Control Quantification And Necessary Improvements For Individuals With Post-Stroke Gait: Implications For Future Customizable Rehabilitation Approaches, Azarang Asadi May 2024

Motor Control Quantification And Necessary Improvements For Individuals With Post-Stroke Gait: Implications For Future Customizable Rehabilitation Approaches, Azarang Asadi

Doctoral Dissertations

Although often taken for granted, walking is an extremely complex motor skill that requires sensory inputs, neural communication, advanced control strategies, and coordination of the muscles and joints. Electrical signals traveling from the brain to the muscles are transformed to mechanical forces to achieve desired motion. A stroke damages the central nervous system and neural pathways, limiting the ability of survivors to walk. Walking speed is significantly decreased and asymmetrical walking patterns emerge. A crucial component of stroke rehabilitation is gait training, a therapeutic intervention to help individuals to improve their walking ability, as walking is essential for functional independence …


Uniting Cognitive Models And Ai: Early Alzheimer’S Screening Through Language Analysis, Ziming Liu May 2024

Uniting Cognitive Models And Ai: Early Alzheimer’S Screening Through Language Analysis, Ziming Liu

Doctoral Dissertations

Alzheimer's Disease (AD) and related dementias (PwADRD) often lead to memory issues, language difficulties, and cognitive impairments. These symptoms can cause social isolation, anxiety, depression, accelerating cognitive decline, and negatively impacting quality of life. Traditional diagnostic and rehabilitation methods, relying on Artificial Intelligence (AI) or clinical observations, sometimes lack transparency and explainability for the growing population affected by AD. My research aims to address these challenges by developing AI systems that analyze affective states and cognitive deficits in PwADRD interactions. This involves creating more precise diagnostic tools and rehabilitation methods, as well as trustworthy AI agents to improve PwADRD's quality …


Development And Characterization Of Injectable, Cell-Encapsulated Chitosan-Genipin Hydrogels, Tyler R. Priddy-Arrington Mar 2024

Development And Characterization Of Injectable, Cell-Encapsulated Chitosan-Genipin Hydrogels, Tyler R. Priddy-Arrington

Doctoral Dissertations

Over 150,000 patients undergo lower extremity amputation every year in the United States, most commonly caused by complications due to diabetes mellitus, peripheral vascular disease, and trauma. Diseased or damaged tissues that are unable to naturally repair themselves must either be fully removed or replaced, otherwise the injuries can lead to further complications such as infection or death. Tissue resection and amputation, as forms of removing damaged tissue, are not favorable to patients as they can cause pain, reduce mobility, and negatively impact quality of life. However, replacing lost or damaged tissues with donor tissues carries the risks of tissue …


Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu Mar 2024

Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu

Doctoral Dissertations

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population. Part of the glioma microenvironment are microglia, resident immune cells of the CNS that were thought to be involved in the pathogenesis of diverse neurodegenerative diseases. Though it remains uncertain what triggers microglial activation in these disorders, targeting and tracking microglial functions using nanotools like Quantum Dots (QDs) could help us elucidate them in such neurological diseases. This research focuses on the comparative study of different QDs formulations and their selective uptake by brain microglia in primary cultures …


Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu Mar 2024

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu

Doctoral Dissertations

With the development of technology and engineering, nanotechnology has been a multidisciplinary scientific field applied in nearly all science areas, including medicine, genetics, food industry, robotics. In this respect, nanomedicine has gained increasing attention and been a useful, effective therapy for cancer diagnosis, gene transfer, and drug delivery. To design an ideal nano drug delivery system with controlled drug releasing and improved encapsulated drug’s pharmacokinetic and pharmacodynamic profiles, hydrogels and polymer composites have witnessed increased research interest during the last decades. Recently, numerous polymers have been studied to fabricate the ideal wound dressing with biocompatibility, biodegradability, porous structural, and suitable …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Electrostatic Effects On Lipid Bilayer Physicochemal Properties And Vesicle Adhesion, Oscar Zabala-Ferrera Nov 2023

Electrostatic Effects On Lipid Bilayer Physicochemal Properties And Vesicle Adhesion, Oscar Zabala-Ferrera

Doctoral Dissertations

Lipids are an integral part of cells, being the principal component of the cell membrane, and contributing to the function and regulation of biological processes. Lipid nanoparticles mimicking a cell’s endosomes or exosomes are of particular interest within the pharmaceutical industry for their ability to deliver cargo such as RNA into target cells. The delivery process faces a multitude of challenges, so a rational design approach for vesicles that considers a lipid’s physicochemical contribution to the membrane is desired. To that end, this thesis explores the creation of large area biomembranes along with the development of electromechanical and optical characterization …


Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh Aug 2023

Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh

Doctoral Dissertations

Macrophages are highly plastic cells that are a part of the mononuclear phagocytic system and play a crucial role in both the innate and the adaptive immune systems. Although they have functionally diverse roles involved in physiological and pathological processes, they primarily act as phagocytes that aid in clearing infections. During these instances of tissue injury or infections, circulating monocytes are recruited to the site of the injury, where they differentiate to give rise to macrophages that have a pro-inflammatory function. These monocytes derived macrophages, however, exist across a spectrum of phenotypes based on the local tissue environment. The two …


An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen Aug 2023

An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen

Doctoral Dissertations

Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient …


Development And Implementation Of A Computational Modeling Tool For Evaluation Of Tha Component Position, Thang Dac Nguyen May 2023

Development And Implementation Of A Computational Modeling Tool For Evaluation Of Tha Component Position, Thang Dac Nguyen

Doctoral Dissertations

The human body is a complicated structure with muscles, ligaments, bones, and joints. Modeling human body with computational tools are becoming a trend [1]. More importantly, using computational tools to evaluate human body is a non-invasive technique that could help surgeons and researchers evaluate implant products [2]. Therefore, the development of a model which can analyze both implant sizing suggestion and kinematics of subject specific data could prove valuable. For total hip arthroplasty, one common complication is in vivo separation and dislocation of the femoral head within the acetabular cup [3] [4]. Developing a successful computational tool to address this …


Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia Oct 2022

Enabling Daily Tracking Of Individual’S Cognitive State With Eyewear, Soha Rostaminia

Doctoral Dissertations

Research studies show that sleep deprivation causes severe fatigue, impairs attention and decision making, and affects our emotional interpretation of events, which makes it a big threat to public safety, and mental and physical well-being. Hence, it would be most desired if we could continuously measure one’s drowsiness and fatigue level, their emotion while making decisions, and assess their sleep quality in order to provide personalized feedback or actionable behavioral suggestions to modulate sleep pattern and alertness levels with the aim of enhancing performance, well-being, and quality of life. While there have been decades of studies on wearable devices, we …


Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre Oct 2022

Unobtrusive Assessment Of Upper-Limb Motor Impairment Using Wearable Inertial Sensors, Brandon R. Oubre

Doctoral Dissertations

Many neurological diseases cause motor impairments that limit autonomy and reduce health-related quality of life. Upper-limb motor impairments, in particular, significantly hamper the performance of essential activities of daily living, such as eating, bathing, and changing clothing. Assessment of impairment is necessary for tracking disease progression, measuring the efficacy of interventions, and informing clinical decision making. Impairment is currently assessed by trained clinicians using semi-quantitative rating scales that are limited by their reliance on subjective, visual assessments. Furthermore, existing scales are often burdensome to administer and do not capture patients' motor performance in home and community settings, resulting in a …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner Aug 2022

Brain Inspired Organic Electronic Devices And Systems For Adaptive Signal Processing, Memory, And Learning., Subhadeep Koner

Doctoral Dissertations

A new class of electronic device has emerged which bear the potential for low powered brain like adaptive signal processing, memory, and learning. It is a non-linear resistor with memory coined as memristor. A memristor is a two-terminal electrical device which simultaneously changes its resistance (processing information) and store the resistance state pertaining to the applied power (memory). Therefore, it can collocate memory and processing much like our brain synapse which can save time and energy for information processing. Leveraging stored memory, it can thereby help future engineered systems to learn autonomously from past experiences. There has been a growing …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Extracellular Matrix Stiffness As A Cue To Shape Phenotypic Evolution Of Triple Negative Breast Cancer, Ning-Hsuan Tseng Jun 2022

Extracellular Matrix Stiffness As A Cue To Shape Phenotypic Evolution Of Triple Negative Breast Cancer, Ning-Hsuan Tseng

Doctoral Dissertations

Accumulation of epigenetic and genetic changes results in oncogenic transformation of epithelial cells. During breast cancer metastasis, while the extracellular matrix (ECM) becomes stiffer, breast cancer cells transmit mechanical forces into intracellular tension and activate signaling pathways influencing growth, migration, and metastasis. Once cancer cells detach from the primary tumor, they intravasate into the vasculature, survive in the circulation, extravasate and adapt to a new microenvironment of a secondary site. Throughout the process, only a very small population of cancer cells survive, and they are likely to reside at the metastatic sites for several years. The most frequent metastatic sites …


Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park Jun 2022

Development Of In Vitro Bone Organoid Models For The Recapitulation Of Bone Complexity, Yongkuk Park

Doctoral Dissertations

Osteoporosis is the most common skeletal disorder that thins and weakens the bones, yet the detailed mechanisms remain poorly understood and limited therapeutic options are available. This can be attributed to the lack of relevant experimental models that can recapitulate the bone complexity and bone remodeling. Mouse models have identified many critical genes and molecules regulating bone metabolism but are limited to studying detailed cellular and molecular processes due to anatomical inaccessibility and restricted ability to manipulate bone structure. Considerable efforts have been made to generate physiologically relevant models by using synthetic and biomaterial-based 3D scaffolds. However, there are no …


The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller Dec 2021

Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller

Doctoral Dissertations

Nearly 800,000 people in the United States suffer stroke annually. Following the onset of stroke, survivors will exhibit deficits, such as hemiplegia, which will limit their function and ability to perform activities of daily living (ADLs). In order to regain independence, many stroke survivors will employ maladaptive compensatory strategies to help with the completion of tasks. Compensation is generally defined as any performance of a task that is different than the way it may have been performed before the onset of a neurodegenerative disorder. While for some severely impaired individuals, compensation may be necessary, for most these maladaptive strategies ultimately …


A Novel Intervention To Prevent Post-Traumatic Osteoarthritis Following Knee Joint Injury, Gerardo E. Narez Oct 2021

A Novel Intervention To Prevent Post-Traumatic Osteoarthritis Following Knee Joint Injury, Gerardo E. Narez

Doctoral Dissertations

The knee joint is the most commonly injured body part in the human body. Injuries as a result of participation in sports, or other recreational activities, often leads to damage to the anterior cruciate ligament (ACL) and meniscus. Injury to these tissues is strongly associated with subsequent knee post-traumatic osteoarthritis (PTOA), which is considered a serious disease because it greatly impacts a patient’s quality of life and significantly increases their risk of premature death. To return stability to the joint, the current clinical treatment is to perform reconstruction of the torn ACL and a meniscal debridement, or meniscectomy, when needed. …


Enhancing Biomechanical Function Through Development And Testing Of Assistive Devices For Shoulder Impairment And Total Limb Amputation, Patrick Hall Aug 2021

Enhancing Biomechanical Function Through Development And Testing Of Assistive Devices For Shoulder Impairment And Total Limb Amputation, Patrick Hall

Doctoral Dissertations

Assistive devices serve as a potential for restoring sensorimotor function to impaired individuals. My research focuses on two assistive devices: a passive shoulder exoskeleton and a muscle-driven endoprosthesis (MDE). Previous passive shoulder exoskeletons have focused on testing during static loading conditions in the shoulder. However, activities of daily living are based on dynamic tasks. My research for passive shoulder exoskeletons analyzes the effect that a continuous passive assistance has on shoulder biomechanics. In my research I showed that passive assistance decreases the muscular activation in muscles responsible for positive shoulder exoskeleton. An MDE has the potential to have accurate and …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Surface Enhanced Raman Spectroscopy (Sers) As An Approach For The Emerging Liquid Biopsy Diagnostics, Nariman Banaei Jun 2021

Surface Enhanced Raman Spectroscopy (Sers) As An Approach For The Emerging Liquid Biopsy Diagnostics, Nariman Banaei

Doctoral Dissertations

Large Molecule bioanalysis and biosensor development are essential techniques that are required in many applications, including biotherapeutic development, in vitro diagnostic, biomarker detection, and early detection. These techniques should be highly specific and sensitive enough to identify and quantify an analyte of interest with minimum sample pretreatment requirements. This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS). It introduces sensing techniques to quantify various disease biomarkers, specifically pancreatic cancer. Blood is the best source of information about our body's function. There are many biomarkers in the blood, and each biomarker's high expression level …