Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Bioelectrics Publications

2017

Irreversible electroporation

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova Sep 2017

Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

We demonstrate that conditioning of mammalian cells by electroporation with nanosecond pulsed electric field (nsPEF) facilitates their response to the next nsPEF treatment. The experiments were designed to unambiguously separate the electroporation-induced sensitization and desensitization effects. Electroporation was achieved by bursts of 300-ns, 9 kV/cm pulses (50 Hz, n = 3–100) and quantified by propidium dye uptake within 11 min after the nsPEF exposure. We observed either sensitization to nsPEF or no change (when the conditioning was either too weak or too intense, or when the wait time after conditioning was too short). Within studied limits, conditioning never caused desensitization. …


Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova Jan 2017

Electrosensitization Increases Antitumor Effectiveness Of Nanosecond Pulsed Electric Fields In Vivo, Claudia Muratori, Andrei G. Pakhomov, Loree Heller, Maura Casciola, Elena Gianulis, Sergey Grigoryev, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors …