Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Investigation Of Physiochemical Properties And Biocompatibility Of Amourphos Calcium Polyphosphate Hydrogel Doped With Antibiotics And Injectable Polymeric Dicalcium Phosphate Dihydrate Bone Cement, Yasaman Chehreghanianzabi Jan 2020

Investigation Of Physiochemical Properties And Biocompatibility Of Amourphos Calcium Polyphosphate Hydrogel Doped With Antibiotics And Injectable Polymeric Dicalcium Phosphate Dihydrate Bone Cement, Yasaman Chehreghanianzabi

Wayne State University Dissertations

Amorphous calcium polyphosphate (ACPP) is an inorganic polymer ceramic. Here we use a simple method of preparing ACPP hydrogel in the presence of excess volume of water. Essentially, water availability to polyphosphate chains accelerates water molecule ingress and microstructural transformation of ACPP hydrogels. Antibiotic delivery capacity of ACPP hydrogel increases by the specific mixing and molding method, where the VCM has higher antibiotic encapsulation efficiency with the small burst release for the compressed discs. In part of this study, we investigate impact of ACPP hydrogel replacement by monomeric calcium phosphate on the quality of final product (dicalcium phosphate dihydrates (DCPD) …


Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday Jan 2020

Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday

Wayne State University Dissertations

Oxidative stress and endothelial dysfunction are reported in the cardiovascular and neurovascular diseases. Oxidative stress is caused due to an increase in the generation of reactive oxygen (ROS) and nitrogen species (RNS) and incapacity of antioxidant systems to eliminate ROS and RNS. Endothelial dysfunction is characterized by a reduction in nitric oxide (NO) bioavailability. NO is constitutively produced by enzyme endothelial nitric oxide synthase (eNOS). A reduction in tetrahydrobiopterin (BH4), which is an essential cofactor of eNOS, can lead to eNOS uncoupling. There is complex interplay between the ROS/RNS and antioxidant system underlying pathophysiologies of vascular diseases, however our quantitative …


Evaluation Of Far-Side Occupant Safety Based On Numerical Modeling, Syed Akhtar Imam Jan 2020

Evaluation Of Far-Side Occupant Safety Based On Numerical Modeling, Syed Akhtar Imam

Wayne State University Dissertations

The objective of this study was to augment the knowledge of the far-side occupant injury biomechanics in side impact vehicle crashes. Most research studies conducted to investigate the far-side occupant injuries are through the field crash data for a better understanding of human impact responses, injury mechanisms, and injury tolerance levels. The data obtained from field data is also used in the development of injury mitigation technologies, such as safety belts, airbags, etc. A field data represents the injury outcome of an automotive crash, but it doesn’t leave behind enough information for in-depth knowledge. The use of cadaver is the …


Development Of Rat Head Finite Element Model And Tissue Level Biomechanical Threshold For Traumatic Axonal Injury, Runzhou Zhou Jan 2020

Development Of Rat Head Finite Element Model And Tissue Level Biomechanical Threshold For Traumatic Axonal Injury, Runzhou Zhou

Wayne State University Dissertations

Traumatic brain injury (TBI) is caused by local tissue deformation at the time of trauma, leading to neurological dysfunction. In the United States alone, 2.87 million people sustain a TBI each year, of which one-fifth results in death. Traumatic axonal injury (TAI) is a well-recognized consequence of every fatal head injury and more than 85% of vehicular crash-related blunt head injuries. The most common and important pathologic feature of TBIs are multifocal changes to axons in the white matter produced by rapid head acceleration/deceleration during a traumatic event with consequent local shear/tension on neural tissue and axons contributing to secondary …


Development Of Photoacoustic Tomographic Systems For Brain Hemorrhage Detection, Karl Kratkiewicz Jan 2020

Development Of Photoacoustic Tomographic Systems For Brain Hemorrhage Detection, Karl Kratkiewicz

Wayne State University Dissertations

Preterm neonates (age) and/or with low birth weight (

Photoacoustic imaging (PAI) is an imaging modality which derives its contrast from differences in optical absorption coefficients of tissue through laser irradiation and acoustic detection. Therefore, PAI derives its signal directly from optical absorbers such as blood; the critical component in a hemorrhage. We discuss operation and processing methods of our Verasonics Vantage system. We then investigate thermal safety of PAI in mouse model for various laser pulse repetitions rates and illumination duration. We then develop two photoacoustic tomographic systems for eventual translation to clinic for hemorrhage detection. One system being …


Titanium Nitride Nanotube Electrodes Used In Neural Signal Recording Application And Neurotransmitter Detection, Gui Chen Jan 2020

Titanium Nitride Nanotube Electrodes Used In Neural Signal Recording Application And Neurotransmitter Detection, Gui Chen

Wayne State University Dissertations

Electrode probes are devices widely used for stimulating and recording neural cell signals in the neuroscience field, which can convert the ion potential generated by electrochemical activities into an electronic potential that can be measured by the external instrument systems. A stable neural interface that effectively communicates with the nervous system via electrode is much important for the robust recording and the long-term monitoring of the activity of the neural signals. These probes are designed to minimize tissue damage for superior signal quality. Each probe’s mechanical, geometric, and electrical characteristics are precise and highly reproducible for consistent, high-quality results. There …


In Vitro Atherosclerosis Disease Model Via The Ring Stacking Method, Cameron Brandon Pinnock Jan 2020

In Vitro Atherosclerosis Disease Model Via The Ring Stacking Method, Cameron Brandon Pinnock

Wayne State University Dissertations

Creation of an in vitro atherosclerotic disease model using the novel Ring Stacking Method. Singular self-assembling tissue rings made up smooth muscle cells and fibrin hydrogel are stacked on one another to create a tissue engineered vessel. These biologically engineered blood vessels are then seeded with endothelial cells via combined static rotational and dynamic bioreactor in order to create a functional intima layer. Early stage atherosclerosis was induced via the addition of oxidized low-density lipoproteins (ox-LDL) to the fibrin hydrogel that creates the media layer of the engineered vessel. After the creation of the intima layer the engineered vessel was …


Development Of A Novel Cardiac Ischemia-Reperfusion Model In The Axolotl, Jeremy Tolentino Llaniguez Jan 2020

Development Of A Novel Cardiac Ischemia-Reperfusion Model In The Axolotl, Jeremy Tolentino Llaniguez

Wayne State University Dissertations

The Center for Disease Control’s National Center for Health Statistics data for mortality from diseases of the heart show the age-adjusted death rate has fallen from almost 600 deaths in the 1950s to just over 190 deaths per 100,000 U.S. residents today. With the recognized limitations of pharmacotherapy of myocardial infarction (MI), cell-based therapies have been undergoing rapid development and clinical testing. However, there is still no consensus about cell types, delivery routes, dosing and treatment schedules and pretreatment conditioning of cells prior to administration. Furthermore, a fundamental question remains unanswered about the reasons for the poor capacity for myocardial …


Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris Jan 2020

Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris

Wayne State University Dissertations

Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment.

Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup …


Spatiotemporal Release Of Growth Factors In A Biomaterial-Focused Organotypic Spinal Cord Injury Model, Elizabeth Mays Jan 2020

Spatiotemporal Release Of Growth Factors In A Biomaterial-Focused Organotypic Spinal Cord Injury Model, Elizabeth Mays

Wayne State University Dissertations

Over 17,000 people per year in the United States sustain a spinal cord injury (SCI) for which there is no gold standard of care and life-long complications. SCI is a complex wound environment with various growth factors (GFs), cellular activity, and scar formation at various timepoints. For example, basic fibroblast growth factor (bFGF) is released immediately to protect local support cells, namely oligodendrocytes (OLs). Brain derived neurotrophic factor (BDNF) has peak expression at 2-3 days in mice and 5-7 days in humans, and aids axonal growth across the injury site. Incidentally this is around the same time as M1 macrophage …