Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Utah State University

Age-related macular degeneration

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Effect Of Physical Stimuli On Angiogenic Factor Expression In Retinal Pigment Epithelial Cells, Farhad Farjood May 2019

Effect Of Physical Stimuli On Angiogenic Factor Expression In Retinal Pigment Epithelial Cells, Farhad Farjood

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Age-related macular degeneration (AMD) is a major cause of blindness in adults. Abnormal growth of blood vessels in the eye during the course of AMD causes damage to the retina, resulting in irreversible blindness. The goal of this research was to determine whether physical pressure on retinal cells can contribute to the increased blood vessel formation. To replicate the tears in the cell layers, a micropatterning method was used as a means of detaching cells from each other. Two new devices were also developed to mimic slow and fast increases in mechanical pressure on cell layers of the eye. After …


A Computational Study Of Vegf Production By Patterned Retinal Epithelial Cell Colonies As A Model For Neovascular Macular Degeneration, Qanita Bani Baker, Gregory J. Podgorski, Elizabeth Vargis, Nicholas Flann Jan 2017

A Computational Study Of Vegf Production By Patterned Retinal Epithelial Cell Colonies As A Model For Neovascular Macular Degeneration, Qanita Bani Baker, Gregory J. Podgorski, Elizabeth Vargis, Nicholas Flann

Biology Faculty Publications

Background: The configuration of necrotic areas within the retinal pigmented epithelium is an important element in the progression of age-related macular degeneration (AMD). In the exudative (wet) and non-exudative (dry) forms of the disease, retinal pigment epithelial (RPE) cells respond to adjacent atrophied regions by secreting vascular endothelial growth factor (VEGF) that in turn recruits new blood vessels which lead to a further reduction in retinal function and vision. In vitro models exist for studying VEGF expression in wet AMD (Vargis et al., Biomaterials 35(13):3999–4004, 2014), but are limited in the patterns of necrotic and intact RPE epithelium they can …