Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Michigan Technological University

2023

Department of Materials Science and Engineering

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Magnesium-Based Nanocomposites: A Review From Mechanical, Creep And Fatigue Properties, S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, J. W. Drelich, J. Goldman, S. Sharif, A. F. Ismail, M. Razzaghi Aug 2023

Magnesium-Based Nanocomposites: A Review From Mechanical, Creep And Fatigue Properties, S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, J. W. Drelich, J. Goldman, S. Sharif, A. F. Ismail, M. Razzaghi

Michigan Tech Publications, Part 2

The addition of nanoscale additions to magnesium (Mg) based alloys can boost mechanical characteristics without noticeably decreasing ductility. Since Mg is the lightest structural material, the Mg-based nanocomposites (NCs) with improved mechanical properties are appealing materials for lightweight structural applications. In contrast to conventional Mg-based composites, the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability. The present article reviews Mg-based metal matrix nanocomposites (MMNCs) with metallic and ceramic additions, fabricated via both solid-based (sintering and powder metallurgy) and liquid-based (disintegrated melt deposition) technologies. It also reviews strengthening models and mechanisms that …


Conventional Platinum Metal Implants Provoke Restenosis Responses In Atherogenic But Not Healthy Arteries, Lea M. Morath, Roger J. Guillory Ii, Alexander A. Oliver, Shu Q. Liu, Martin L. Bocks, Galit Katarivas Levy, Jaroslaw Drelich, Jeremy Goldman Jun 2023

Conventional Platinum Metal Implants Provoke Restenosis Responses In Atherogenic But Not Healthy Arteries, Lea M. Morath, Roger J. Guillory Ii, Alexander A. Oliver, Shu Q. Liu, Martin L. Bocks, Galit Katarivas Levy, Jaroslaw Drelich, Jeremy Goldman

Michigan Tech Publications

Platinum-containing stents are commonly used in humans with hypercholesterolemia, whereas preclinical stent evaluation has commonly been performed in healthy animal models, providing inadequate information about stent performance under hypercholesterolemic conditions. In this investigation, we used an ApoE−/− mouse model to test the impact of hypercholesterolemia on neointima formation on platinum-containing implants. We implanted 125 μm diameter platinum wires into the abdominal aortas of ApoE−/− and ApoE+/+ mice for 6 months, followed by histological and immunofluorescence examination of neointimal size and composition. It was found that ApoE−/− mice developed neointimas with four times larger area and ten times greater thickness than …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …