Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun Oct 2019

Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun

Doctoral Dissertations

Due to increased reports of infections and biofouling arising from the use of invasive medical devices, novel antimicrobial agents with suitable anti-biofouling properties are critically needed. Transition metals exhibit substantial antimicrobial activity; however, their use is limited because of their inherent toxicity to eukaryotic cells. In this regard, naturally occurring halloysite clay nanotubes (HNTs) show significant promise. HNTs possess a high surface area for adsorption while its hollow lumen can be used for loading different materials.

Herein, we demonstrate an electrolytic method for generating and depositing metal nanoparticles (NPs) on the HNTs outer surface and we propose an optimized method …


Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp Aug 2019

Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp

Doctoral Dissertations

The increased public awareness of concussion and traumatic brain injury has motivated continued research into the brain, its functions, and especially its response to injury, with a focus on improving the brain’s repair capabilities. However, due to the critical nature of the tissue, it is currently difficult for researchers to acquire high resolution images below the cortex without sacrificing a lab animal. Sacrificing an animal greatly reduces the amount of data that can be obtained from it, making longitudinal studies unappealing or unfeasible because a large number of animals is needed to obtain useful data over multiple time points. Additionally, …


Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen May 2019

Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen

Doctoral Dissertations

Three-dimensional (3D) cell spheroid model has been long considered a better model to mimic in vivo physiology compared to two-dimensional (2D) cell culture model. Traditional 2D cell models provide a simple, convenient and quick technique for drug screening but fail to simulate the complexity and heterogeneity of cells in the in vivo environment. The last few decades have remarked substantial progress toward the advancement of three-dimensional (3D) cell cultures as systems which better mimic cellcell and cell-matrix interaction in the in vivo physiology. Nowadays, 3D cell models have been emerging, not only as an important approach in drug discovery and …


Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar Feb 2019

Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar

Doctoral Dissertations

Gliomas are brain tumors that primarily arise from glial cells. Gliomas account for 70% of the brain tumors and they are more prevalent in older adults. About 60% of the people with gliomas experience at least one seizure. Brain tumors can grow and metastasize to neighboring areas, thereby destroying normal brain cells. In a brain tumor microenvironment, both malignant cancer cells and healthy brain cells are present. Studies have shown that astrocytes may have a role in tumor growth in the brain. Monocultures cannot evaluate interactions between two cell types and does not accurately represent in vivo conditions. Thus, a …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …