Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Evaluation Of Cell Concentration And Viability By Impedance Spectroscopy On Microfluidic Devices, Jason Eades Jul 2021

Evaluation Of Cell Concentration And Viability By Impedance Spectroscopy On Microfluidic Devices, Jason Eades

LSU Master's Theses

This document describes two distinct platforms that implement electrochemical impedance spectroscopy (EIS) within microfluidic devices for rapid, label-free cell analysis. Each study provides proof-of-concept evaluations of these devices for cell counting and viability analysis applications to mitigate some of the challenges associated with conventional methods. Chapter one includes background information on each version of EIS selected and motivations for the studies conducted. Chapter two describes the design and fabrication of a modular, reusable microfluidic device. Additionally, the methodology for and results from the application of this platform for the measurement of zebrafish sperm cell concentrations are presented. Chapter three describes …


Characterizing The Biophysical Properties And Origin Of Extracellular Matrix In The Breast Tumor Microenvironment, Connor T. King Oct 2020

Characterizing The Biophysical Properties And Origin Of Extracellular Matrix In The Breast Tumor Microenvironment, Connor T. King

LSU Master's Theses

Tumors derived from breast tissue possess the ability to manipulate and permanently alter their surrounding tissue. Studies demonstrate that tissues surrounding breast tumors have differences in secreted factors as well as extracellular matrix (ECM) deposition and structure. However, some fundamental gaps exist within this paradigm: specifically, what exacerbates this transformation and are these changes maintained between the subtypes of breast tumors? Therefore, a targeted evaluation of the effects of the tumor on the stromal microenvironment in a subtype specific manner will be invaluable. To determine if tumor aggressiveness and subtype differentially regulate the tumor microenvironment, a model must be constructed …


Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello Jun 2019

Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello

LSU Master's Theses

In E. coli, fatty acid synthesis is catalyzed by the enzyme acetyl-CoA carboxylase (ACC), which converts acetyl-CoA into malonyl-CoA. Malonyl-CoA is a major building block for numerous of bioproducts. Multiple parameters regulate the homeostatic cellular concentration of malonyl-CoA, keeping it at a very low level. Understanding how these parameters affect the bacterial production of malonyl-CoA is fundamental to maximizing it and its bioproducts. To this end, competing pathways consuming malonyl-CoA can be eliminated, and optimal nutritional and environmental conditions can be provided to the fermentation broth. Most previous studies utilized genetic modifications, expensive consumables, and high-cost quantification methods, making …


Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta Oct 2018

Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta

LSU Master's Theses

Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as photovoltaics, catalyst, biosensors DNA interactions, protein detections, hotspot of surface-enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. Silver nanocubes with significant spectral signatures between 400-700 nm are observed in this experimental research. Whereas study of single cells will enable the analysis of cell-to-cell variations within a heterogeneous population. These variations are important for further analysis and understanding of disease propagation, drug development, stem cell differentiation, embryos development, and how cells respond to each other and their environment. Adipose-derived mesenchymal stem cells possess the …


Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot Oct 2018

Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot

LSU Master's Theses

Laryngotracheal stenosis (LTS) is a health condition in which an obstruction in the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation in infants, LTS often requires corrective surgery. Currently, clinical methods of assessing the blockage region are simplistic and subjective, and it is challenging to determine the most effective surgical strategy for any given patient. In the present work, a comprehensive methodology is proposed for characterizing the stenosis region both in terms of its anatomical parameters and its corresponding aerodynamic properties. The combination of computational fluid dynamics (CFD) …